
Technical report on fitting an inverse normal distribution 
 
The cumulative distribution function (cdf) of the inverse normal covers a wide range of possible shapes 

that make it appealing for modelling cumulative germination curves. Figure 1 shows a range from rapid 

to symmetric, normal looking germination patterns. 

 

Approximations to the inverse normal distribution function 

No closed form exists for the cdf of the inverse normal, except for the relationship given by Eq (2) of 

the paper. 
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The contribution from the second half of the approximation to IG(t;τ,µ,λ) given by (2) can sometimes 

be incorrect simply because of the size of λ/µ. For example, Excel would return an approximation of 

0.5 for IG(75;0,75,7500), rather than the correct value of 0.519898, simply because it cannot handle the 

evaluation of e200 Φ(-20;0;1). The accuracy of (2) therefore depends on the coefficient of variation 

λµ=ϕ . The following is a simplification of (2) using a standard approximation to Φ(t) which 

allows the elimination of the e2λ/µ term: 
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where φ(u) is the standard normal density function evaluated at u, 
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and  

 

b1 = 0.31938153 

b2 = -0.356563782 

b3 = 1.781477937 

b4 = -1.821255978 

b5 = 1.330274429.  

 

Using (A2.1) we obtain IG(75;0,75,7500) ≈ 0.521485, an over-estimate by 0.001588. Equation (A2.1) 

is based on an approximation for a standard normal (Abramowitz and Stegun, 1972, 26.2.17) which is 

accurate to 7.5×10-8 and which has certain near-optimal properties. When applied to both parts of (2), 

however, a different pattern arises. Figure 2 shows the error, defined as (approximate probability - 

exact probability), for the inverse normal distribution function with τ = 0, µ = 75 and λ = 1000. For this 

distribution the coefficient of variation of T is 27.4%. It is clear that the maximum error (0.000405) 

occurs at t = µ, which is unusual for approximations of this kind. 

 

As we have seen, however, the error can be larger than this. The exact value for P(T ≤ µ) can be 

approximated, using a Taylor expansion, quite accurately by 
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when ϕ  < 1. Using this as an accurate approximation, we can show that, at t = µ (TR1) has a maximum 

error of 0.001744, and this occurs when ϕ  = 0.065436. While the approximation is often extremely 

good, a potential error of 0.001744 could lead to inefficient ML estimates and to larger deviances than 

are necessarily the case. 

 

We also investigated approximations based on Gaussian quadrature (see Abramowitz and Stegun, 

1970, 25.4.30 and Table 25.4) and found that the 16-point method offers an extremely good general 



approximation. For example, this method gave IG(75;0,75,7500) ≈ 0.519898; using increased 

precision, this represents an over-estimate by 4.5× 10-7. Numerical integration in packages such as 

Mathematica use some form of Gaussian quadrature, usually dividing the region of integration into 

many small intervals recursively until some an appropriate precision goal is met. A single use of 

Gaussian quadrature would therefore be expected to work well for approximating P(tj ≤ T ≤ tj-1) for 

small time intervals. We also investigated a single application of the16-point method to approximate 

IG(t;τ,µ,λ) for t≤µ. For t>µ we replaced P(T≤t) by P(T≤µ) + P(µ<T≤t). The approximation was 

extremely good: we obtained a maximum error of 4.88× 10-7 for µ = 75, λ = 7500 and of 7.86× 10-9 

µ = 75, λ = 1000. Figure 3 a plot of the error function for the latter example. 

 

The Excel spreadsheet available on our website uses 16-point Gaussian quadrature in a user-defined 

function to evaluate P(a < T ≤ b) for the inverse normal distribution. The code is given in Appendix 3. 

 
Appendix 1 and 2 provide additional technical information to the paper. 
 
 
Time to 50% germination 
 
Clearly an initial solution for the median of an inverse Gaussian can be taken as the mean, (0)

50 ˆ ˆt = τ + µ . 

Using Newton-Raphson iteration, a first-order approximation is (1)
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Using Eq (2) we obtain 
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This solution is usually adequate; however further improvement can be obtained by iteration. However, 

the difference between (1)
50t  and (2)

50t  (and successive differences) is usually very small, so we adopt 

s.e.( (1)
50t ) for the approximate standard error of 50t̂ . 
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V is the variance covariance matrix of the parameter estimates in the order ( ˆˆ ˆ, ,τ λ µ ). (The variances and 

covariances are set to 0 if the corresponding parameter is not estimated.)  
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 (including the one used in GenStat). Thus, we replace this term by: 

 
ˆ 2 2 4 52
ˆ 1 2 3 4 5

ˆ
2

ˆ 2
b w b w b w b w b we

λ
µ

  + + + +λ Φ − =
 µ π 

 

 

where 1
ˆ

1 0.2316419 2
ˆ

w =
λ+ × ×
µ

 

 

and  

 

b1 = 0.31938153,  

b2 = -0.356563782,  

b3 = 1.781477937,  

b4 = -1.821255978,  

b5 = 1.330274429. 

 



Example 

For the Hunter et al. data, the GenStat solutions are  
                  estimate         s.e. 
b                    111.8         51.8 
m                    34.08         4.15 
lag                  46.39         3.75 
gamma               0.9125       0.0263 
 

estimate      ref    correlations 
b               1    1.000 
m               2    0.841  1.000 
lag             3   -0.949 -0.891  1.000 
gamma           4   -0.068 -0.024  0.055  1.000 
                         1      2      3      4 
  

     Mean  seMean       Sd    seSd      T50   seT50 
    80.47   1.888    18.82   2.372    76.03   1.684 
 

So t50 is calculated in GenStat as: 

 
DELETE [REDEFINE=yes] _XDev 
CALC _XDev = EDINVNORMAL(0.5;34.08;111.8) 
PRINT [IP=*] ':  Inverse Normal Equivalent Deviate = ',_XDev;F=1;SKIP=0 
:  Inverse Normal Equivalent Deviate = 29.65 

 
We need lag + 29.65 = 46.39+ 29.65 = 76.03 hours. 

 

The standard error in GenStat is obtained slightly differently. In Excel it can be approximated as 

follows. 
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Then  
 

2 2 2 2 2
50var( ) 1 3.75 0.04098 51.8 0.72276 4.15

1 0.04098 (3.75 51.8 0.949)
2 1 0.72276 (3.75 4.15 0.891)

0.04098 0.72276 (51.8 4.15 0.841)

t = × + × + ×
× × × × − 

 + + × × × × − 
 + × × × × 

 = 3.121996. 

 
Hence s.e.( 50t̂ ) = 1.767. 
 
 
Reference 

Abramowitz. M. and Stegun, I.A. (editors) (1972). Handbook of mathematical functions with formulas, 

graphs , and mathematical tables. Wahington, D.C. : National Bureau of Standards. 

 
 
 



Appendix 1 Ordinary versus weighted least squares  

When the sample size n. is known, the multinomial outcomes have second-order moments as follows. 

For na, the number of seeds germinating in (ta-1, ta), 

 

 var(na) = n. pa (1 – pa), 

 cov(na, nb) = - n. pa pb, for a ≠ b. (A1.1) 

 

Thus, for Na, the cumulative number of seeds germinating in (0, ta), 

 

 var(Na) = n. Pa (1 – Pa), 

 cov(Na, Nb) = n. Pa (1 - Pb), for a < b, 

 cov(Na, Nb) = cov(Nb, Na), for a > b. (A1.2) 

 

In (8) Ej is simply the mean (n.Pj). Ordinary least squares proceeds by forming a vector (Na - n.Pa) 

using the k cumulative counts and minimising (Na - n.Pa)T(Na - n.Pa). This assumes (incorrectly) that 

the covariance matrix of (Na - n.Pa) is the identity matrix. 

 

Weighted least squares proceeds as follows.  

 

Form a vector equal to either (na - n.pa) or (Na - n.Pa) as well as the corresponding covariance matrix Vn 

using (A1.1) or VN using (A1.2).  

 

Now minimise (Na - n.Pa)T 1−
NV (Na - n.Pa) or (na - n.pa)T 1−

nV  (na - n.pa). 

 

It is straightforward to show that both matrix expressions are algebraically equivalent to 
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Appendix 2 Discussion of the analysis of deviance when γγγγ = 1 

If we denote jF̂  as the ML estimate of Fj using the full data set and jF~  as the ML estimate using 

germinated seeds only, then it can be shown that the difference between (15) and (16) is the sum of two 

components: 
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(A2.1) assesses whether the germinated:ungerminated frequencies are consistent across groups with the 

probabilities that the assumed common distribution attaches to the two categories, whereas (A2.2) 

assesses whether the conditional common probability distributions are the same for the two methods of 

estimation.  

 

 

 



Appendix 3 Macro to evaluate P(a ≤ ≤ ≤ ≤  T  ≤≤≤≤ b) for T distributed as IG(ττττ,µµµµ,λλλλ) 
 
The macro defines the function IG(a, b, m, lag, L) = P(a < T ≤≤≤≤ b)  
 
Function IG(a As Double, b As Double, m As Double, lag As Double, L As Double) 
Dim x(16), w(16) 
If b <= lag Then 
    IG = 0 
    Exit Function 
    Else: If a <= lag Then a = lag 
End If 
x(1) = -0.9894009439 
x(2) = -0.944575023073232 
x(3) = -0.865631202387831 
x(4) = -0.755404408355003 
x(5) = -0.617876244402643 
x(6) = -0.458016777657227 
x(7) = -0.281603550779258 
x(8) = -9.50125098376374E-02 
w(1) = 0.0271524594 
w(2) = 0.0622535239 
w(3) = 0.0951585116 
w(4) = 0.1246289712 
w(5) = 0.1495959888 
w(6) = 0.1691565193 
w(7) = 0.182603415 
w(8) = 0.1894506104 
For i = 9 To 16 
    w(i) = w(17 - i) 
    x(i) = -x(17 - i) 
Next i 
y = 0 
For i = 1 To 16 
    t = (b - a) / 2 * x(i) + (b + a) / 2 
    f = Sqr(L / (8 * Atn(1) * (t - lag) ^ 3)) 
    f = f * Exp(-L / (2 * (t - lag) * m ^ 2) * (t - lag - m) ^ 2) 
    y = y + w(i) * f 
Next i 
IG = y * (b - a) / 2 
Exit Function 
End Function
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Figure 1 Selected inverse normal distributions; the density functions (top) and distribution functions 

(bottom) arise using τ = 0, µ = 50 and λ = 10, 50, 100, 200, 500, 1000, 2000 and 5000 (from 

left to right) 
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Figure 2 Error made in using approximation (TR1) for the inverse normal distribution function 

with τ = 0, µ = 75, λ = 1000. 

 

-0.0000050

0.0000000

0.0000050

0.0000100

0.0000150

0.0000200

0.0000250

0 25 50 75 100 125 150 175

t

Er
ro

r

 
 
Figure 3 Error made in using 16-point Gaussian quadrature for the inverse Gaussian distribution 

function with τ = 0, µ = 75 and λ = 1000. 

 


