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An introduction to REML 
 

REML stands for 

 

 REsidual Maximum Likelihood 
 

or sometimes 

 

 REstricted Maximum Likelihood 
 

or even 

 

 REduced Maximum Likelihood (Patterson and Thompson, 1971) 

 

So what is Maximum Likelihood? 

 

The likelihood of a sample is the prior probability of obtaining the data in your sample. 

 

This requires you to assume that the data follow some distribution, typically 

 

 Binomial or Poisson for count data 

 

 Normal or LogNormal for continuous data 

 

Each of these distributions involves at least one unknown parameter which must be 

estimated from the data. 

 

Estimation is often achieved by finding that value of the parameter which maximises the 

likelihood. 

 

This value is referred to as the maximum likelihood estimate of the parameter. 

 

Note. 

 

It turns out that maximising the log-likelihood is equivalent to maximising the likelihood and 

is easier to deal with (for numeric accuracy). 
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Example 1 seed germination experiment 

 

Take 100 seeds and inspect whether each seed germinates (G) or not (NG). 

 

What is the ML estimate of p, the probability that a seed germinates?  

 

Suppose the 100 seeds have germinated (or not) in the following pattern: 

 

 G NG G G … NG G 

 

Then 

 

Likelihood = p  (1 - p)  p  p …   (1 - p)  p 

 

Suppose out of n seeds the number of seeds that germinated is g (and hence the number of 

seeds that did not germinate is n-g). Then the likelihood is  

 

Likelihood = p
g
  (1 - p)

n-g
 

 

which is not as easy to maximise (mathematically differentiate) as its logarithm: 

 

logLikelihood = g ln(p) + (n-g) ln(1 - p) 

 

The ML solution obtained by maximizing the Likelihood is the same as that obtained by 

maximising the logLikelihood. 

 

Mathematical solution: 
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Example 2 Flesh hue of freshly cut mangoes 

 

Assume flesh hue is normally distributed. 

 

What is the ML estimate of , the mean flesh hue, and 2
, the variance in flesh hue? 

 

Suppose you have sampled n random mangoes and measured their flesh hues which we label 

y1, y2, …, yn. For a continuous variable the likelihood is defined as the product of the density 

functions evaluated at each sample point: 

 

           
 

√    
 

 
(    ) 

    
 

√    
 

 
(    ) 

      
 

√    
 

 
(    ) 

    

 

As we’ll see, we need to take some care if transformations are involved, because the Jacobian 

of the transformation may need to be included. 

 

Again, this is more difficult a mathematical expression to differentiate, so instead log-

transform and maximize instead logLikelihood 

 

  
 

 
  (    )  

(    ) 

   
  

 

 
  (    )  

(    ) 

   
  

 

 
  (    )  

(    ) 

   
 

 

Collecting like terms: 

               
 

 
  (  )  

 

 
  (  )  ∑

(    ) 

   

 

   

 

 

Mathematical solution: 
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Development of REML 
 

It is possible to partition the likelihood into two terms: 

 a likelihood that involves the mean parameter  (as well as the variance parameter 2
), 

and 

 

 a residual likelihood that involves only the variance parameter 2
 

in such a way that  

 the first likelihood can be maximised to estimate the mean parameter  (and its 

solution does not depend on the estimate of 2
); and 

 

 the residual likelihood can be maximised to estimate the variance parameter 2
. This 

solution is known as the REML estimate of 2
 (and will be different to the ML 

estimate). 

 

For the normal distribution in Example 2, a quick way to develop the idea relies on the 

following identity: 

∑(    ) 
 

   

 ∑[(    )̅̅ ̅  ( ̅   )]
 

 

   

 ∑(    ̅) 
 

   

  ( ̅   )  

 

So the first step in separating out the two likelihoods is to re-write the logLikelihood for the 

normal distribution 

               
 

 
  (  )  

 

 
  (  )  ∑

(    ) 

   

 

   

 

as 

               
 

 
  (  )  

 

 
  (  )  ∑

(    ̅) 

   

 

   

 
 ( ̅   ) 

   
 

 

Now we note the following result. If you take a random sample of size n from a normal 

distribution N(, 2
), then the sample mean  ̅ is also normally distributed with mean  and 

variance 2
/n. Thus the likelihood for the mean  ̅ is 



The Mathematics of REML 

5 

 

                ̅  
 

√     ⁄
 

 
( ̅  ) 

    ⁄  √
 

    
 

 
 ( ̅  ) 

    

and hence the logLikelihood for the sample mean  ̅ is 

                   ̅  
 

 
  ( )  

 

 
  (  )  

 

 
  (  )  

 ( ̅   ) 

   
 

 

So now return to the log-Likelihood for the random sample from the normal distribution, 

which is 

               
 

 
  (  )  

 

 
  (  )  ∑

(    ̅) 

   

 

   

 
 ( ̅   ) 

   
 

 

and separate out the logLikelihood for the sample mean  ̅: 

 

                                                                  
 

 
 

 
  (  )  

 

 
  (  )  

 ( ̅   ) 

   
 

 

 
   

 
  (  )  

   

 
  (  )  ∑

(    ̅) 

   

 

   

 

You can see that  

 the first line is (almost) the loglikelihood of the sample mean  ̅, differing only in the 

constant term -½ ln(n). This does not affect the maximization of the function with 

respect to  and actually disappears under transformation. We will return to this later. 

 The second line involves only the variance parameter 2
. This is the loglikelihood of 

the set of n-1 random variables that are independent of the sample mean, and which 

form the sample variance 2
 (again, we will return to this). 

 

The second line is called the REsidual (or Restricted or Reduced) Likelihood. This 

likelihood is maximized separately from the first likelihood, that of the sample mean. This 

produces an estimate of 2
 which is called the REML estimate of the variance. 

 

The function in the first line is maximized separately to obtain the estimate of .   
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REML solutions for the normal distribution: 
 

1. Maximize  

 

 
 

 
  ( )  

   

 
  (  )  

   

 
  (  )  ∑

(    ̅) 

   

 

   

 

 
with respect to   : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Maximize  

 

 
 

 
  ( )  

 

 
  (  )  

 

 
  (  )  

 ( ̅   ) 

   
 

 
with respect to : 

 

 

 

 

 

 

 

 

It turns out that, for the normal distribution,  

 the solution for  (in this case) does not depend on the parameter   ,
 

 

 the solution for    is the unbiased sample estimate of variance.  
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Common matrices in REML development 
 

Matrices play a very important part in mathematical statistics, so we summarise some of the 

common matrices and their properties and illustrate their uses. 

 

Special matrices 

 

1. The identity matrix   is a matrix of 1s on the diagonal and 0s off the diagonal. A 

subscript is sometimes used to indicate the number of rows and columns, omitted where 

the size of the matrix is clear. For example, 

   (
   
   
   

) 

 

2. The zero matrix is a matrix of all 0s, e.g. 

   (
   
   
   

) 

 

3. A matrix of all 1s is often denoted as   , with the number of rows and the number of 

columns used as subscripts if in doubt. For a square matrix only a single subscript is 

necessary. 

    (
    
    
    

) (3 rows and 4 columns) 

 

This matrix is also formed as a direct product of a column vector of 1s by a row vector of 

1s. We denote a column vector of four 1s by     

          
  (

 
 
 
) (    )  (

    
    
    

)      

 

4. An idempotent matrix   say is one such that     . The matrix is a special case. Let  

  
 

 
   

Then it straightforward to show that (
 

 
  ) (

 

 
  ) = (

 

 
  ) so (

 

 
  ) is idempotent. 
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5. An orthogonal matrix   say is one such that          . An example of an 

orthogonal matrix is the Helmert matrix  . Firstly, look at the pattern of left hand 

matrices below: 

 

(
     
   

),  (
  √      √ 

  √    √ 
) 

 

(
         
       
       

), (

  √      √      √ 

  √    √     

  √      √    √ 

) 

 

(

              
            
            
             

), 

(

 
 

  √      √        √     √ 

  √    √          

  √      √      √    

  √       √         √     √  )

 
 

 

 

(

 
 

                  
                
                
                
                 )

 
 

,  

(

 
 
 

  √      √        √      √     √ 

  √    √              

  √      √      √        

  √       √         √     √     

  √       √         √       √     √  )

 
 
 

 

etc 

The first row of each matrix on the LHS is a row of 1s. Then comes {1, -1}, {1, 1, -2}, 

{1, 1, 1, -3} {1, 1, 1, -4} so the last row of a 5×5 matrix would be {1, 1, 1, 1, -5} etc.  

 

When you pre-multiply a data vector   by any of these matrices on the LHS in the above, 

then the first row of the new vector would be the sum of the data (          ). 

The second element of the new vector would be (     ), the third element (      

   ), the next (            ), and so on. 

 

If you now divide each element in a row by the square root of the sum of squares of the 

numbers in a row you obtain the Helmert orthogonal matrix which we have placed to the 

right of the equivalent matrix above.  

 

Note that the inverse of an orthogonal matrix   is simply its transpose,   . 
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Statistical properties of transformed variables 

 

1. The multivariate normal density function 

We arrange the random normal variables           into a column vector   (

  

 
  

). These 

may not have the same means or variances or be uncorrelated. We denote the mean vector as 

  and the variance-covariance matrix as  . Then the multivariate normal density function is 

 

 (          )  
 

(  )  ⁄ | |  ⁄
  

 
 
(   )    (   )

 

 

2. Special case of a random sample from a univariate normal distribution 

 

Suppose that random variables           are a random sample from a single normal 

distribution N(, 2
). Then the means in the previous section are all the same, the variances 

are all the same and the covariances/correlations are all zero. The matrix expression reduces 

to the likelihood of the data that we first considered, that is,  

 

           
 

√    
 

 
(    ) 

    
 

√    
 

 
(    ) 

      
 

√    
 

 
(    ) 

    

 

can be expressed as in matrix terms as 

           
 

(  )  ⁄ (  )  ⁄
 

 
 

   (   ) (   )
 

 

where the mean vector can be written as     . 
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3. Orthogonal transformations 

 

Let   be an orthogonal matrix and transform   (no assumptions about identically distributed 

uncorrelated data) to  

     

Then 

 ( )     

and 

   ( )       

 

Note that for a transformation from   to   we need to include the Jacobian which is the 

(positive value of the) determinant of the matrix involved, in this case  . However from the 

basic definition of  ,    (   )     (   )     ( )    so    ( )     and hence the 

Jacobian is +1. 

 

Now let the elements of   be identically distributed and uncorrelated, so that      and  

      where   is an n×n identity matrix. Then 

 

The elements           of      are uncorrelated and normally distributed. 

 

Furthermore, if   is chosen as a Helmert matrix, or any orthogonal matrix whose first row is 

{1, 1, …, 1}/n, then 

 

    √  ̅ is normally distributed with mean √   and variance   ,  independently of  

 

            which are all independent, normally distributed with means 0 (because 

rows 2 to n of   are all orthogonal to row 1) and variances   . 

 

With this choice for   we have (1) preserved normality, (2) preserved independence and (3) 

preserved total sum of squares. The last property comes about when we use the definition of 

orthogonality (namely          ) in: 

 

∑   
   

       (  ) (  )                   ∑   
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We saw that    √  ̅ so that   
    ̅ . What we have essentially achieved by this 

orthogonal transformation is to isolate the sample mean from the n-1 variables that make up 

the sample variance. Specifically we showed that the sums of squares are preserved, so that 

 

 ∑   
  

    ∑   
  

      
  ∑   

  
      ̅  ∑   

  
     

 

Taking the   ̅  to the left hand side of this equation gives 

 

∑  
    ̅ 

 

   

 ∑  
 

 

   

  

 

However ∑   
    ̅  

    is simply ∑ (    ̅)  
   , and although this expression involves n 

terms it has been shown to be equivalent to the sum of squares of n-1 independent normal 

variables              whose means are all 0 and whose variances are all   .  

 

FURTHERMORE these n-1 independent normal variables are also independent of    √  ̅  

 

By definition a 
2
 variable with  degrees of freedom is the sum of squares of  independent, 

standard normal variables N(0,1). Remember also that the unbiased estimate of    is the 

sample variance defined by 

 

   
∑ (    ̅)  

   

   
  

 

from which we obtain ∑ (    ̅)  
    = (n-1) s

2
. Since this is the sum of squares of n-1 

normal variables               which are all independent with means 0 and variance   , 

what we have demonstrated is that, for a random sample of size n from a normal population, 

 

 ̅   (  
  

 
)                   

(   )    
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FINALLY let’s return to the logLikelihood for the random normal sample           

discussed earlier. The last form we looked at on page 4 was 

                            
 

 
  (  )  

 

 
  (  )  ∑

(    ̅) 

   

 

   

 
 ( ̅   ) 

   
 

 

Rather than look at the logLikelihood of this set of variables, we look instead at the 

logLikelihood of the transformed set of variables              for which the Jacobian was 

seen to be 1 (and remember    √  ̅ and ∑ (    ̅)  
    ∑   

  
   ): 

 

                            
 

 
  (  )  

 

 
  (  )  ∑

  
 

   

 

   

 
(   √  )

 

   
 

 

Given that u1 is normally distributed with mean √   and variance   , we now can separate 

out the two terms. Thus, the logLikelihood of the transformed set of variables              

is 

 

[ 
 

 
(  )  

 

 
  (  )  

(   √  )
 

   
]  [ 

   

 
  (  )  

   

 
  (  )  ∑

  
 

   

 

   

] 

 

The first is the likelihood for    from which can be maximized to provide the ML/REML 

estimate of . The second is the likelihood for the set of variables              which are 

all independent of   , and  this provides the REML estimate of   . 

 

This is the sort of approach that allows us to generalise the REML estimation to the variance 

parameters of any general linear mixed model (the “mixed” part indicates any number of 

random and fixed effects in the model). But first we will build up the idea of REML more 

slowly. 
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4. Transformations involving symmetric idempotent matrices 

 

A fundamental result for the GLM is the following. 

 

Let   be a vector of n standardized normal variables, each independent N(0,1). Then by 

definition       
 . 

 

Now let   be a symmetric idempotent matrix. Then 

 

         with degrees of freedom =      ( ). 

 

Let   be a second symmetric idempotent matrix. Then 

 

         with degrees of freedom =      ( ), and is independent of      if and only if 

    . 
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A General Linear Model with only fixed effects 
 

Example 1 – simple random sampling from a normal distribution 

The simplest model is a random sample of size n from a single population (which we assume 

to be normal from here on), all independent with mean  and variance 
2
. We can write a 

typical sample value as 

 

        

 

In matrix form, this is simply  

       

where           are the elements of  ,     , the column vector of n 1s,   is the column 

vector of parameters, in this case a scalar equal to the mean , and   is the column vector of 

random errors.  

 

Other more complex models have the same structure, so we will examine the general case 

where   contains p parameters. 

 

Estimation through least squares 

This method seeks to obtain the least squares estimate of the parameters of   by minimising 

the error sum of squares    , and hence (    )  (    ). The solution is a simple 

exercise in matrix differentiation. If we denote the estimate of   by   we have 

 

  (   )       

 

Using this solution in  (    )  (    ) allows us to evaluate the Residual Sum of 

Squares (Res SS): 

 

        (    )  (    )  (   (   )     ) (   (   )     ) 

 

Taking out the   vector from inside the two brackets gives: 

 

         (   (   )    ) (   (   )    )  
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HOWEVER the matrix (   (   )    ) is symmetric and idempotent (check this!), hence 

 

         (   (   )    ) (   (   )    )    (   (   )    )  

 

By Property 4 on Page 14 we can conclude that 

 

          with degrees of freedom =      (   (   )    ). 

 

In general      (   )       (   )       (   ). Hence 

 

=      (   (   )    )        ( )        ( (   )    )  

=         (   (   )  )  

 

Now     is an p×p matrix in general (with p = 1 for the current example) and hence 

   (   )   is an p×p identity matrix,    whose trace is just p. 

 

So (   (   )    ) is a symmetric, idempotent matrix whose trace is (n-p), and hence, 

using the result for symmetric and idempotent matrices, 

 

 Res SS =   (   (   )    )        with (n-p) degrees of freedom. 

 

For the simple example p = 1,   is the scalar ,          ,                

and hence: 

 

 the estimate of   (   )      ( )  (      )   ̅  

 

Next we examine the structure of the Res SS for this simple example. In particular, 

 

   (   )        (   )       
 

 
       

 

 
   

 

and hence 
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         (   (   )    )    (  
 

 
   )      

 

 
        

 

Now     ∑   
  

   and     is simply ∑   
 
     ̅, and so, for simple random sampling 

from a normal distribution: 

 

        ∑   
  

     ̅  ∑ (    ̅)  
   (   )         with n-1 degrees of 

freedom. 

 

Note also that if    (       ) then the least squares estimate of the parameter vector  is 

identical to the ML estimate since the same equation is solve in both cases. 
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Example 2 Simple Linear Regression 

 

The simple linear regression model 

 

            

 

has 2 unknown parameters, with           assumed fixed. 

 

In matrix form, the only difference between this model and the previous model is the design 

matrix X: 

  [
   

  
   

] 

with  now a column vector containing the two parameters and .  

 

The least squares / ML estimate of the intercept and slope 

 

Firstly,     [
   
     

] [
   

  
   

]  [
   ̅
  ̅ ∑  

 ] and similarly     [
  ̅

∑     
]. 

 

The determinant     is  (∑  
     ̅ ) =  ∑(    ̅) . Thus  

 

(   )      
 

 ∑(    ̅) 
[∑  

    ̅

   ̅  
] [

  ̅

∑    
] 

 

 
 

 ∑(    ̅) 
[
  ̅∑  

    ̅ ∑    

    ̅ ̅   ∑    

] 

 

Now     ̅ ̅   ∑      (∑       ̅ ̅)   ∑(    ̅)(    ̅), so the least squares / 

ML solution of the slope is 

 

  
∑(    ̅)(    ̅)

∑(    ̅) 
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Similarly,   ̅ ∑  
    ̅ ∑      can be written as   ̅ ∑(    ̅)    ̅ ∑(    ̅)(    ̅) so 

the least squares / ML solution of the intercept is 

 

  
  ̅ ∑(    ̅)    ̅ ∑(    ̅)(    ̅)

 ∑(    ̅) 
  ̅    ̅  

 

The ML estimate of the variance parameter 

 

An immediate differentiation of the logLikelihood for this model, namely 

                            
 

 
  (  )  

 

 
  (  )  ∑

(         )
 

   

 

   

 

produces this estimate of   : 

 

                    
∑(        )

 

 
 

∑(    ̅   (    ̅))
 

 
 

 

The top line can be expanded: 

 

                    
∑(        )

 

 
 

∑(    ̅)    ∑(    ̅) 

 
  

 

although there are several other ways to write this expression. You may recognise the 

numerator as the difference between the Total SS and Regression SS of a simple linear 

regression ANOVA. 

 

To develop a REML estimate we first look at the matrix approach to ML estimation. The 

matrix expression of the logLikelihood is as follows. 

 

The random vector   has mean    and variance     (and note that       (   )     . 

Thus  

                            
 

 
  (  )  

 

 
  (  )  

 

   
(    ) (    )  
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Differentiating this with respect to 
2
 and substituting the ML estimate for   gives an 

immediate result, namely 

 

                    
(    ) (    )

 
 

 

which expands to the previous solution.  

 

We now make an orthogonal transformation      with   an n×n orthogonal matrix 

chosen to have the following form: 

 

  [

 √ ⁄   √ ⁄

(    ̅) √∑(    ̅) ⁄  (    ̅) √∑(    ̅) ⁄

   

] 

 

You can see that the sum of squares of the elements in both row 1 and row 2 is 1, and the 

pairwise sum of the elements in rows 1 and 2 sum to 0, as required for orthogonality. 

Mathematicians have proved that such a matrix exists. For example, row 3 could have the 

following elements: 

 

(                  )  

with each element divided by √(     )  (     )  (     ) .  

 

Clearly when you take the cross-product sum of rows 1 and 2 you obtain 0. So do rows 2 and 

3 once to expand the brackets. The sum of squares of elements of row 3 is also 1. 

 

The strength of this approach is two-fold. Firstly, it allows easy proof of the distributional 

properties of everything to do with simple linear regression. Secondly, it leads simply to a 

REML solution for the variance parameter estimation. 

 

Using the properties of an orthogonal matrix: 
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 ∑   
  

    ∑   
  

     

 

 the random variables                 are all independent, normally distributed each 

with variance 
2
. In particular, evaluating the first two terms of the transformed vector: 

 

    √  ̅ 

 

    ∑(    ̅)  √∑(    ̅) ⁄  ∑(    ̅)(    ̅) √∑(    ̅) ⁄   √∑(    ̅)  

 

Next,  ( )   (  )     , that is 

 

[
 
 
 
 
 (  )
 (  )
 (  )

 
 (  )]

 
 
 
 

 [

 √ ⁄   √ ⁄

(    ̅) √∑(    ̅) ⁄  (    ̅) √∑(    ̅) ⁄

   

] [
   

  
   

] [
 
 ] 

 

Recall that rows 3 to n of   are orthogonal to rows 1 and 2 of  , and notice that the two 

columns of the design matrix   are proportional to rows 1 and 2 of  . Hence the means of 

          must all be 0 by orthogonality. 

 

Next, looking at just the first two rows of these matrices, and given that  

 

∑(    ̅)  √∑(    ̅) ⁄  ∑(    ̅) √∑(    ̅) ⁄  √∑(    ̅) , 

 

after matrix multiplication we obtain 

 

[
 (  )

 (  )
]  [

√ √  ̅

 √∑(    ̅) 
] [

 
 ]  [

√ (    ̅)

√∑(    ̅)  
] 

 

Now 

                            
 

 
  (  )  

 

 
  (  )  

 

   
(    ) (    ) 
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Using the transformation      we can substitute   in the LogLikelihood above with 

         (since   is orthogonal). Furthermore. the Jacobian of the transformation is 1 

(again since   is orthogonal and       ( )   ). That leads to: 

 

                                   

  
 

 
  (  )  

 

 
  (  )  

 

   
(      ) (      ) 

 

Next       so this can be added inside the two brackets without changing their values.  

 

                                

  
 

 
  (  )  

 

 
  (  )  

 

   
(         ) (         ) 

 

Taking the common    from both brackets, preserving the correct order of multiplication and 

noting that (  )    gives: 

 

                                

  
 

 
  (  )  

 

 
  (  )  

 

   
(     )    (     ) 

 

However,       so that term in the middle can be dropped. Furthermore, we have 

evaluated PX earlier. This is a column vector with first element √ (    ̅), second 

element √∑(    ̅)   and every other element 0. That leads to a simple expression for this 

logLikelihood which separate into three components: 

 

                                  
 

 
  (  )  

 

 
  (  )  

 

   
(   √ (    ̅))

 

 

 

 
 

 
  (  )  

 

 
  (  )  

 

   
(   √∑(    ̅)  )

 

 

 

 
   

 
  (  )  

   

 
  (  )  

 

   
∑  

 

 

   

 

 

So in summary, 
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    √  ̅ is normally distributed with mean √ (    ̅) and variance 
2
, independently 

of 

 

     √∑(    ̅) , which is normally distributed with mean  √∑(    ̅)  and 

variance 
2
.  

 

 Both    and    are independent of          n which are all independent, normally 

distributed with means 0 and variances   . 

 

Moreover, 

   
    ∑(    ̅)  which is the Regression SS in a simple linear regression ANOVA, 

and hence, under the hypothesis that  = 0, this must be distributed as 
2


2
 with 1 degree 

of freedom, independently of  

 

          , where ∑   
  

    = Residual SS in a simple linear regression ANOVA for the 

following reason: 

 

∑  
 

 

   

 ∑  
 

 

   

   
    

  ∑  
 

 

   

   ̅     ∑(    ̅)  ∑  
 

 

   

 

 

Rearranging this equation and noting that ∑   
  

   -   ̅  = ∑ (    ̅)  
   : 

 

∑(    ̅) 
 

   

   ∑(    ̅)  ∑  
 

 

   

 

 

The first term is the Total SS in a simple linear regression ANOVA and the second is the 

Regression SS, so ∑   
  

    is the Residual SS in a simple linear regression ANOVA. Since the 

n-2 variables           are all independent, normally distributed with means 0 and 

variances   , we have shown that 

 

 the Residual SS in a simple linear regression ANOVA is distributed as a 
2


2
 with n-2 

degrees of freedom (irrespective of whether the hypothesis that the slope is zero is true or 
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not), independently of  

 

 the Regression SS in a simple linear regression ANOVA, which is distributed as a 
2


2
 

with 1 degree of freedom (but only if the hypothesis that the slope is zero is true). 

 

 

The REML estimate of the variance parameter 

 

The logLikelihood of u that was developed in the last section has already separated out the 

residual likelihood that involves only the variance parameter 
2
. This is the third term in: 

 

                    
 

 
  (  )  

 

 
  (  )  

 

   
(   √ (    ̅))

 

 

 

 
 

 
  (  )  

 

 
  (  )  

 

   
(   √∑(    ̅)  )

 

 

 

 
   

 
  (  )  

   

 
  (  )  

 

   
∑  

 

 

   

 

 

Differentiating this with respect to 
2
 immediately gives us the REML solution: 

 

                    
∑   

  
   

   
 

           

   
             

 

The REML estimate of variance in a simple linear regression model is unbiased, since the 

expected value of a 
2
 variable with n-2 degrees of freedom is n-2. 
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Example 3 Multiple Linear Regression 

 

The multiple linear regression model involving p explanatory variates 

 

                           

 

has p+1 unknown parameters, with                     assumed fixed and the {i} 

assumed independent, normally distributed with means 0 and variances   . 

 

The matrix form of the model,        involves the following: 

 

  [
        

    

        

],   [

 
  

 
  

] 

 

The ML estimates of the parameters 

 

The ML solution for  , the vector of parameters for the general model, has already been 

shown to be   (   )     .  

 

Differentiating with respect to    in 

 

                    
 

 
  (  )  

 

 
  (  )  

 

   
(    ) (    ) 

 

and using the ML estimates of the fixed effects parameters produces this estimate of   : 

 

                  
(    ) (    )

 
  

 

which is the Residual SS in the multiple linear regression ANOVA divided by n, not (n-1-p) 

as is the case for the Residual MS in the ANOVA.  

 

As for random samples from a normal population, this ML estimate of variance is biased.  
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The REML estimate of the variance parameter 
2
 

 

The mathematics starts to get more complex with this model, so the exact approach will be 

left to when we consider the General Linear Mixed Model. Here we simply sketch a way of 

partitioning the two expressions, one of which conveys the information on the fixed effects 

parameters  , and the other involves only the variance parameter   . 

 

For the example of random sampling from a normal population we started with 

    (   ̅)  ( ̅   ) 

 

The parameter   is a special case of    and so we start with 

 

     (    )  (     )  (    )   (   ) 

 

and expand the two bracketed terms at the end of the              :  

 

                    
 

 
  (  )  

 

 
  (  )  

 

   
(    ) (    ) 

 

So 

(    ) (    )  [(    )   (   )] [(    )   (   )] 

 

 (    ) (    )   (    )  (   )  (   )    (   ) 

 

We look next at the middle expression and take X into the left hand bracket: 

 

 (    )  (   )   (        ) (   ) 

 

But            since the is the equation solved for the minimization of the (p+1) fixed 

effects parameters (recall that the solution for   is   (   )     ). Hence the middle 

expression can be dropped to give: 

 

(    ) (    )  (    ) (    )  (   )    (   ) 
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The second on the two terms on the right is a function of the (p+1) parameters in  . The first 

expression is free of the parameter vector, and can actually be written as 

 

(    ) (    )= 

(   (   )     ) (   (   )     )    (   (   )    ) (   (   )    )  

 

However,    (   )     is a symmetric, idempotent matrix, so in fact 

 

(    ) (    )    (   (   )    )  

 

Now we can write the multiple linear regression logLikelihood as 

 

                    
   

 
  (  )  

   

 
  (  )  

 

   
(   )    (   ) 

 

 
     

 
  (  )  

     

 
  (  )  

 

   
  (   (   )    )  

 

Now differentiating the second line with respect to    leads immediately to the REML 

solution for   : 

 

                      
(    ) (    )

     
 

  (   (   )    ) 

     
 

 

which is the Residual MS of the multiple linear regression ANOVA and is an unbiased 

estimate of variance. 
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Example 4 One-way treatment design 

 

We take a n replicate data from t normal populations whose variances are all the same. This 

really is a special case of multiple linear regression, but we will develop the mathematics 

separately for this model and include the orthogonal matrix transformation proof of the 

distributions of the ANOVA components. We consider the case of equal replication to keep 

the expressions simple, though the same steps are used for unequally replicated designs. 

 

The model is  

                             

 

In terms of the GLM,       , there is one too many parameters in the model above 

(with t treatments there are t means and a single variance; the model above has t+1 

parameters             and the variance parameter   ). The simplest way forward is to 

choose a single restriction among the parameters            . We have chosen to use the 

restriction           for simplicity, and replace (say)    by (          ). 

However, any other restriction will lead to the same solutions for ANOVA components. 

 

The data vector   has n observations in each of t treatments so is a vector of length nt.  

 

The design matrix is: 

  

[
 
 
 
 
 
         

         

         

     
         

            ]
 
 
 
 
 

,   [

 
  

 
    

] 

 

With this definition of  : 

 

     

[
 
 
 
 
     
     
     
     
     ]
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The lower (t-1)×(t-1) sub-matrix has the structure (             
 ). Furthermore, the 

inverse of a general matrix of this form 

 

(     )       
         

        
 

 

Here        and          and hence 

 

(             
 )

  
      

 

 
     

 

where      is a matrix of 1s. Thus, 

 

 

(   )   
 

 
[

 

 
    

 

         
 

 
    

] 

 

The last structure to examine is     which, on multiplication, simplifies to 

 

     [

   ̅

 ( ̅    ̅  )
 

 ( ̅      ̅  )

] 

 

Finally, 

  (   )      
 

 
[

 

 
    

 

         
 

 
    

] [

   ̅

 ( ̅    ̅  )
 

 ( ̅      ̅  )

] 

 

The first element in the resultant column vector is  ̅, and this is the estimate of . 

 

The next element is typical of the remaining solutions. On matrix multiplication, we find that 

the estimate of    is 
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               ( ̅    ̅  )  
 

 
∑( ̅    ̅  )

   

   

 ( ̅    ̅  )  
 

 
∑( ̅    ̅  )

 

   

 

 

 ( ̅    ̅  )  
 

 
∑[( ̅    ̅)  ( ̅    ̅)]

 

   

 ( ̅    ̅  )  ( ̅    ̅)  ( ̅    ̅) 

 

Thus for a one-way equally replicated design, when we select             such that 

∑      
     the estimate of the parameter  is  ̅, the overall mean of the data, and the 

estimate of the i
th

 treatment effect is ( ̅    ̅). 

 

Next, 

      [ ̅ ( ̅    ̅)  ( ̅      ̅)] [

   ̅

 ( ̅    ̅  )
 

 ( ̅      ̅  )

] 

 

     ̅   ∑ ( ̅    ̅)( ̅    ̅  )
   
    

 

     ̅   ∑ ( ̅    ̅)[( ̅    ̅)  ( ̅    ̅)]   
    

 

     ̅   ∑ ( ̅    ̅)    
     ( ̅    ̅) ∑ ( ̅    ̅)   

    

 

Since ∑ ( ̅    ̅) 
      we have ∑ ( ̅    ̅)   

     ( ̅    ̅) 

 

and hence: 

         ̅   ∑( ̅    ̅) 
 

   

 

 

When the null hypothesis (  =0 for all i) holds we have just the one parameter  remaining 

whose estimate is  ̅, and then          ̅ . Hence to test this hypothesis we use 

n∑ ( ̅    ̅)  
   . This is the Treatment SS in the one-way ANOVA. 
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The Residual SS from the original model is 

 

∑∑   
 

 

   

 

   

    ̅   ∑( ̅    ̅) 
 

   

 ∑∑(     ̅  )
 

 

   

 

   

 

 

which is the             in the one-way ANOVA. Another way of writing this expression is: 

 

            (   )∑  
 

 

   

 

 

where   
  is the (unbiased) sample variance for the i

th
 treatment. The degrees of freedom of 

Residual SS are (nt-1)-(t-1) = nt-t = t(n-1), illustrating the fact that for a one-way design, the 

Residual MS in the equally replicated one-way ANOVA is an average of the t sample 

variances from the different treatments. Had the design been unequally replicated, then the 

Residual MS is a weighted average of the t sample variances with weights equal to the 

individual degrees of freedom, namely (    ). 

 

The Residual MS in the one-way ANOVA is an unbiased estimate of the variance parameter 

  . We will see that the ML estimate has a divisor N=nt and is therefore biased. However, we 

will use an orthogonal transformation of the data in the process. 
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The ML estimate of the variance parameter 
2
 for the one-way design 

 

We select an orthogonal matrix   such that  

 the first row is proportional to the unit vector, that is, 1nt, with each element divided by 

√  ; 

 

 the next (t-1) rows are contrasts between the t treatment means. This includes orthogonal 

polynomials (if the treatment lends itself to such as in a fertiliser trial), or simple Helmert 

contrasts such as Treatment 1 versus 2, Treatments 1 & 2 versus 3, Treatments 1 to 3 

versus 4 and so on, so having rows {1, -1, 0, …, 0}, {1, 1, -2, …, 0}, {1, 1, 1, -3, …, 0} 

etc. 

 

 The remaining rows are completed under the orthogonal matrix rules. They will actually 

represent contrasts between the observations within each treatment. 

 

So we define      (with the Jacobian =1) and expect that the first element will estimate 

the overall mean and the next t-1 elements would estimate contrasts among the means 

consistent with how we defined the contrasts in P.  

 

                    
  

 
  (  )  

  

 
  (  )  

 

   
(      ) (      ) 

 

This was manipulated previously for simple linear regression, where we obtained (replacing 

n, the sample size for that model, by nt): 

 

                    
  

 
  (  )  

  

 
  (  )  

 

   
(     ) (     ) 

 

so it remains to evaluate    . Firstly, looking at just the first 3 rows of  : 
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[
 
 
 
 
 
 
 
 
 
 
 
√

 

  
  

 √
 

  
  

 √
 

  
  

  √
 

  
  

 

√
 

  
  

  √
 

  
  

      

√
 

  
  

 √
 

  
  

   √
 

  
  

    

     
 ]

 
 
 
 
 
 
 
 
 
 
 

 

 

After some simplification: 

   √   ̅,  

   √  ⁄ [( ̅    ̅  )],  

   √  ⁄ [( ̅    ̅  )  ( ̅    ̅  )] 

and so on, to     .  

 

Also: 

 

    

[
 
 
 
 
 
 
 
 
 
 
 
√

 

  
  

 √
 

  
  

 √
 

  
  

  √
 

  
  

 

√
 

  
  

  √
 

  
  

      

√
 

  
  

 √
 

  
  

   √
 

  
  

    

     
 ]

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
         

         

         

     
         

            ]
 
 
 
 
 

[
 
 
 
 
 

 
  
  
 

    

    ]
 
 
 
 
 

 

 

  

[
 
 
 
 
 
 
 
 
 
 √

       

 √
 

 
 √

 

 
   

 √
 

 
√

 

 
  √

 

 
  

     
  
     
     
      ]

 
 
 
 
 
 
 
 
 
 

[
 
 
 
 

 
  
  

 
    ]

 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 √   

√
 

 
(     )

√
 

 
(         )

 
   
 
 
 ]

 
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 √   

    

    

 
        

 
 
 ]
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which switches attention away from the treatment means     ,     , …,        to 

differences in means         ,              (     )  (     ), etc. Note 

that    are simple constants. 

 

So the orthogonal transformation has produced a set of variates with the following properties: 

 

    √  ( ̅   ) is normally distributed with mean 0 and variance   , and is 

independent of  

 

 each variate (       )        , which are themselves all independent with means 0 

and variance   , and  

 

 the first t variates               are all independent of the remaining nt - t = t(n - 1) 

variates                   which themselves are all independent with means 0 and 

variances   . 

 

The logLikelihood of the {  } can therefore be separated into three parts: 

                   [ 
 

 
  (  )  

 

 
  (  )  

 

   
(   √   )

 
] 

 

 ⌈∑{ 
 

 
  (  )  

 

 
  (  )  

 

   
(       )

 }

 

   

⌉ 

 

 [ 
 (   )

 
  (  )  

 (   )

 
  (  )  

 

   
∑   

 

  

     

] 

 

 Under the hypothesis that all treatment means are equal (that is, all     , or 

equivalently all     ), ∑   
  

    in the second of these three expressions is the Treatment 

SS in the one-way ANOVA, and is therefore distributed as a      variate with t-1 

degrees of freedom. Moreover, each single component of the Treatment SS tests a 

contrast of one set of means against another, and is distributed as a      variate with 1 
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degree of freedom. 

 

 The final expression in the logLikelihood of the {  } involves ∑   
   

     , which is the 

Residual SS in the one-way ANOVA and is therefore distributed as a      variate with 

nt-t = t(n-1) degrees of freedom, irrespective of whether the treatment means are all 

equal or not. It is also independent of the Treatment SS. Hence  

 

 The ratio of Treatment MS to the Residual MS in the one-way ANOVA is, under the 

hypothesis that all treatment means are equal, distributed as an F variate with t-1 

numerator and t(n-1) denominator degrees of freedom. 

 

Each individual contrast component F value is distributed as an F variate with 1 

numerator and t(n-1) denominator degrees of freedom under the assumption that that 

particular contrast of treatment means is 0. 

 

Note that the Residual MS can be expressed as 

 

            
∑ ∑ (     ̅  )

  
   

 
   

 (   )
 

∑ (   )  
  

   

 (   )
 

∑   
  

   

 
 

 

which is a simple average of the individual sample variances. For an unequally replicated 

one-way ANOVA this becomes a weighted average, with weights (    ). 

 

The ML estimate of 
2
 is the same as the above except that the divisor is tn. This estimator is 

biased. 

 

The REML estimate of 
2
 is the same as the Residual MS and is unbiased. 

 

The examples considered so far all involve sampling from one or more normal distributions 

which are all independent and all have the same variance. We switch now to a more general 

matrix representation of linear mixed models, but look first at a simple model. 
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Example 5 - unpaired t tests – equal variances  
 

This is a special case the design considered in the previous example, that is, a one-way 

treatment design with no blocking. However we will approach this as a special case to 

illustrate why a more general approach is necessary. 

 

For two independent samples taken from normal distributions with different means and the 

same variance, we can invoke the properties for simple random samples from a normal 

distribution: 

 

 For a sample of size   ,  ̅  is normally distributed with mean    and variance 
  

  
, 

independently of 

 

  ̅ , which, for a sample of size   , is normally distributed with mean    and variance 
  

  
.  

 

 Hence  ̅   ̅  is normally distributed with mean (     ) and variance (
  

  
 

  

  
). 

 

Furthermore, since the two sample variances are independent of the two sample means, and 

each is independent of the sample variance: 

 

 ( ̅   ̅ ) is independent of both 
(    )  

 

      with (    ) degrees of freedom, and 

(    )  
 

      with (    ) degrees of freedom. 

 

So we have two competing estimates of the common variance 
2
. We know that the sum of 

two independent    variates is also    with combined degrees of freedom. Hence, for the equally 

replicated case, 
(    )  

  (    )  
 

   is distributed as    with ((    )  (    )) degrees of 

freedom. 

 

Finally, a t variate is, by definition, the ratio of a standardised normal variate to the square 

root of an independent 
2
 variate scaled by dividing by its degrees of freedom (which also 

become the degrees of freedom of the t variate). Thus, if (     ) = 0, 
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( ̅   ̅ )

√(
  

  
 

  

  
)

⁄

√

(    )  
  (    )  

 

  

((    )  (    ))
⁄

 
( ̅   ̅ )

√
(    )  

  (    )  
 

(    )  (    )
(
 
  

 
 
  

)

 

 

is distributed as a   variate with ((    )  (    )) degrees of freedom. 

 

 

Example 6 - unpaired t tests – unequal variances  
 

The adjustment to the previous argument is minor up to the point of combining sample 

variances.  

 

For two independent samples taken from normal distributions with different means and 

different variances, we can invoke the properties for simple random samples from a normal 

distribution: 

 

 For a sample of size   ,  ̅  is normally distributed with mean    and variance 
  

 

  
, 

independently of 

 

  ̅ , which, for a sample of size   , is normally distributed with mean    and variance 
  

 

  
.  

 

 Hence ( ̅   ̅ ) is normally distributed with mean (     ) and variance (
  

 

  
 

  
 

  
). 

 

Furthermore, since the two sample variances are independent of the two sample means, and 

each is independent of the sample variance: 

 



The Mathematics of REML 

37 

 

 ( ̅   ̅ ) is independent of both 
(    )  

 

  
     with (    ) degrees of freedom, and 

(    )  
 

  
     with (    ) degrees of freedom. 

 

If both   
  and   

  were known, then we would simply use ( ̅   ̅ ) as a normally distributed 

variate with variance (
  

 

  
 

  
 

  
) to test (     ) = 0. The problem is that we virtually never 

know the true value of the population variances (binomial sampling with large replication and 

hence using asymptotic normality being an exception). How to proceed? 

 

If we combine the two 
2
 variates 

(    )  
 

  
  and 

(    )  
 

  
  it is impossible to cancel out the 

unknown population variates from the modified formula for the unpaired t test (unless you 

were prepared to assume that one population variance is a known multiple of the other): 

 

     

( ̅   ̅ )

√(
  

 

  
 

  
 

  
)

⁄

√

(
(    )  

 

  
  

(    )  
 

  
 )

((    )  (    ))
⁄

 

 

Note that in the equally replicated case, we effectively took the standardized normal variate  

 

( ̅   ̅ )

√(
  

  
 

  

  
)

 
( ̅   ̅ )

√  (
 
  

 
 
  

)

 

 

and replaced    by its best estimate which happened to be related to a 
2
 distribution, resulting in the 

unpaired t. That led two statisticians working independently (Satterthwaite, who published in 

1946, and Welch, who published in 1947) examined the effect of replacing the two 

population variances in the unequal variance case with individual sample variances: 
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( ̅   ̅ )

√(
  

 

  
 

  
 

  
)

 
( ̅   ̅ )

√(
  
 

  
 

  
 

  
)

 

 

The statistic on the right cannot be distributed exactly as a t statistic because the term in the 

square root of the denominator is not a scaled 
2
 variate. But by matching the first two 

moments, Satterthwaite decided to look at the effect of replacing a linear function of 
2
 

variate by a single 
2
 variate. He worked out how to estimate the degrees of freedom of this 

single 
2
 variate. For sufficiently large samples, he showed that you could use an 

approximate t distribution for  

 

    
  

( ̅   ̅ )

√(
  
 

  
 

  
 

  
)

 

 

with the degrees of freedom estimated using  

   
(
  
 

  
 

  
 

  
)
 

√
  
  
  
  
  

(

 
 
(
  
 

  
⁄ )

 

    
 

(
  
 

  
⁄ )

 

    

)

 
 

 

 

The derivation is fairly straightforward. We wish to replace 
  
 

  
 

  
 

  
 by   

  say, and, just as 

(    )  
 

  
     with (    ) degrees of freedom, we would like  

  
 

  
     with r degrees of freedom for 

some value of r.  

 

Given that  (  
 )   , then  (

(    )  
 

  
 )  (    ) and hence  (

  
 

  
)  

  
 

  
. Similarly   (

  
 

  
)  

  
 

  
 

and  ( 
  
 

  
 )    so  (  

 )    
 . 
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Given that    (  
 )    , then    (

(    )  
 

  
 )   (    ) and hence    (

  
 

  
)  

 

  
 (    )

  
 . 

Similarly,     (
  
 

  
)  

 

  
 (    )

  
  and     ( 

  
 

  
 )     so    (  

 )  
   

 

 
. So, if 

 

  
  

  
 

  
 

  
 

  
 

 

then equating means and variances gives 

 

  
  

  
 

  
 

  
 

  
 

and 

   
 

 
 

 

  
 (    )

  
  

 

  
 (    )

  
  

 

Hence, the appropriate degrees of freedom of the single approximate 
2
 term is 

 

  
  

 

 
  

 (    )
  

  
 

  
 (    )

  
 
 

(
  
 

  
 

  
 

  
)
 

 
  

 (    )
  
  

 
  

 (    )
  
 
 

 
(
  
 

  
 

  
 

  
)
 

 
(    )

(
  
 

  
)
 

 
 

(    )
(
  
 

  
)
  

 

where the true variances in the left hand expression have been replaced by their sample 

estimates in the right hand expressions. 

 

The default procedure in GenStat is to test the equality of variances prior to testing the 

equality of means. The unpaired t test is used for the means when the test of variance is not 

significant, otherwise the Satterthwaite approximation is used. 

 

Modern REML methods reproduce this statistic and degrees of freedom when the 

variances are specified to be different. To see this in action we firstly need to build up the 

Linear Mixed Model in general.  
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The Linear Mixed Model (LMM) 
 

We extend the general linear model to include fixed effects and random effects and general 

variance-covariance matrices. The notation we use is based on a monograph by Brian Cullis 

and Alison Smith (at the time from the Wagga Agricultural Institute, NSW Agriculture; Ari 

Verbyla, BiometricsSA; Robin Thompson and Sue Welham, IACR-Rothamsted) and is 

adopted within GenStat. 

 

1. The general LMM 

 

Every model considered to date can be written as a LMM in the form 

          

where  

   is the n1 vector of observations,  

   is the p1 vector of fixed effects, with   the design matrix of order np that assigns the 

n observations to the appropriate (combinations of) the p fixed effects, 

   is the np vector of random effects, with   the design matrix of order nb that assigns 

the observations to the appropriate (combinations of) the b random effects, and 

   is the n1 vector of residual errors. 

 

We assume that the random effects are normally distributed,    (    
  ), and are 

independent of the residual errors which are normally distributed,    (    
  ). 

 

The variance-covariance matrix   has elements which are functions of a number of 

parameters which form the elements of a vector called  , so sometimes this is emphasised by 

writing the variance-covariance matrix as  ( ). 

 

The variance-covariance matrix   will be written as      , where   has elements which 

are functions of a number of parameters which form the elements of a vector called  , so 

sometimes this is emphasised by writing the variance-covariance matrix as  ( ). Taking the 

parameter    out as a multiplier also allows the matrix   to be the identity matrix   when we 

have independent, identically distributed errors; or a diagonal matrix when we have 
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independent errors but changing variance; or a correlation matrix when we have correlated 

errors but constant variance. 

 

We have seen special cases of the LMM in the previous examples: 

 

 For simple random sampling from a normal population we have one fixed parameter only 

and   = () is a scalar which applies to every observation; hence   is the unit vector 1n. 

There are no other random effects, hence    . 

 

 For simple linear regression there are two fixed effects (the intercept and slope) so  

 T
 = (, ) and   = (1n, x) where x is the vector of explanatory variates. There are no 

other random effects, hence    . 

 

 For a one-way fixed treatment design with no blocks and t treatments there are t fixed 

effects: t means, so  T
 = (1, ..., t); or an overall mean plus t-1 treatment effects, so  

 T
 = (, 1, ..., t-1); or any other parameterisation of the t treatments. Then   is the design 

matrix identifying which treatment each observation belongs to. There are no other 

random effects, hence    . 

 

Notice that instead of a set of fixed treatments of interest, we could have randomly 

selected and t treatments from a large population of treatments, in which case these 

become a random treatment effect and will appear as   in which case   is the design 

matrix identifying which treatment each observation belongs to. We will consider this 

type of experiment later. 

 

Since   and   have zero mean vectors the mean of the data vector is  ( )     and its 

variance-covariance matrix is 

   ( )   (    )(    )   (    )(    )   (    )(    )  

   
        

   

   
 (      ) 

   
   

where          and   
  is a scaling factor that allows the   and   structures to be 

expressed as variance or correlation models in some instances. 
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Thus the distribution of the data vector   is normal with mean    and variance-covariance 

matrix   
  . 

 

 

2. Transforming to segregate the fixed effects 

 

This next step in the REML estimation is similar to what we have done to date with 

orthogonal transformations, though we don’t need every matrix to be orthogonal. 

 

So, we take the data vector y and find transformation of y to [
  

  
]      where the matrix 

  [    ] consists of two specially chosen sub-matrices, just as we chose special 

orthogonal matrices for the different examples earlier in the manual: an n×p matrix    and an 

n×(n-p) matrix   . There are two properties we need for these sub-matrices, namely (and 

remember that there are p fixed effects in the LMM): 

 

Condition 1:   
       

Condition 2:   
         

 

Under these conditions: 

 

     (    
   

    ) since  

 (  )   (  
  )    

          by choice of   , and 

   (  )    
    ( )     

   
     

 

     (    
   

    ) since  

 (  )   (  
  )    

         by choice of   , and 

   (  )    
    ( )     

   
     

 

      (     )    
    ( )     
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Summary to date: Using this transformation,  

[
  

  
]   ([

 
 
]    

 [
  

      
    

  
      

    

]) 

 

The next step requires general properties of conditional distributions of multivariate normal 

variables. Specifically, let 

[
  

  
]   ([

  

  
]  [

      

      
]) 

 

Note that, as a covariance matrix, (1)     and    must be symmetric, and (2)        
 . 

 

Then the conditional distribution of    given    is: 

 

  |    (         
  (     )           

     ) 

 

We now apply this general result to the variates    and    whose means and variance 

matrices given on the previous page. The result appears complex, however it can be further 

simplified. 

 

  |    (    
    (  

    )
       

 [  
       

    (  
    )

    
    ]) 

 

How does this simplification work? The mathematics is not easy, and there are several ways 

to generate the result. We start by considering a new matrix whose inverse can be shown to 

exist. 

 

So, consider the n×n matrix [      ] where      is an n×p matrix and    is an n×(n-p) 

matrix with   
      and   

        as defined earlier. Next, consider this matrix product: 

[      ]
     ([      ]

 )   ([      ]
  [      ])

   

 ([
     

  
 ] [      ])

  

 

(and now absorbing the H matrix in the middle into the left hand matrix) 

 ([
  

  
  

] [      ])
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 [
          

  
    

    

]

  

 [
       

   
    

]
  

 

 [
(      )   

 (  
    )

  ] 

 

Now we rearrange this equality be pre- and post- multiplication to leave H
-1

 on the left hand 

side of the equation: 

 

          [
(      )   

 (  
    )

  ] [ 
     ]

  

 

 [    (      )    (  
    )

  ][      ]
  

     (      )          (  
    )

    
  

 

FINALLY, pre-multiply throughout by   
   and post-multiply by     to obtain 

 

  
           

      (      )             
    (  

    )
    

     

 

The LHS is   
     and hence, on simplification of the RHS, 

 

  
       

  (      )       (  
    )(  

    )
  (  

    ) 

 

However, we started with   
      and so 

 

  
     (      )   (  

    )(  
    )

  (  
    ) 

 

which leads to what we set out to prove, namely that, for these choices of    and   , 

 

  
     (  

    )(  
    )

  (  
    )  (      )   

 

and since we are conditioning on   , if we define the fixed   
    (  

    )
     as   

 , we 

have the more simple statement: 

  |    (    
    

 (      )  )  



The Mathematics of REML 

45 

 

3. The two logLikelihood functions 

 

What we would like to achieve are two logLikelihoods that are functions of the data vector y, 

the design matrices X and G and the parameters in the variance matrix, namely   
  and   (or 

some simple function of  ).  

 

Now the joint (multivariate normal) density function of    and    is equal to the product of 

the conditional density function of   |   and the marginal density function of   . 

 

1. The Residual logLikelihood 

 

Now     (    
   

    ) and thus the Residual logLikelihood,    say, is 

 

          
 

 
((   )   (  

 )     |  
    |    

 (  
    )

      
 ⁄ ) 

 

and, in terms of the original data vector, it is 

 

            
 

 
((   )   (  

 )     |  
    |      (  

    )
    

    
 ⁄ ) 

 

This expression can now be written in terms of the original design matrix X and variance 

matrix H in two steps. 

 

Step 1 

Rearrange the result for    , which was 

        (      )          (  
    )

    
  

to obtain   (  
    )

    
  equal to P say, where 

 

          (      )        
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Step 2 

Use the well-known result that for appropriate matrices A, D and X 

 

|
  
   

|  | ||        | 

 

on     : 

 

|    |  |
  

      
    

  
      

    

|  |  
    ||  

     (  
    )(  

    )
  (  

    )| 

 

However the matrix in the final determinant was shown to equal (      )  , and hence, 

after taking logarithms, 

 

   |    |     |  
    |     |(      )  |     |  

    |     |      | 

 

leading to 

 

   |  
    |     |    |     |      | 

 

The first determinant on the RHS of the last equation is 

 

   |    |     |    |     |   |     | | 

 

The term    |   | does not depend on any of the parameters in the model and so can be 

absorbed into the constant in the Residual logLikelihood, giving our final expression 

 

          
 

 
((   )   (  

 )     | |     |      |        
 ⁄ ) 

 

where           (      )       . 
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2. The logLikelihood for the fixed effects 

 

The logLikelihood for the fixed effects,    say, is based on the distribution of   |   and hence 

is 

          
 

 
(     (  

 )     |(      )  |

 (       
 ) (      )(       

 )   
 ⁄ ) 

 

 

4. The REML solution for the random effects 

 

The parameters to estimate are the parameters in the variance matrix   
     

 (      ). 

These are: 

 the scaling variance parameter   
 , 

 the parameters involved in  , the variance matrix of the random effects, which were 

placed in the vector   whose i
th

 element is i 

 the parameters involved in      , the variance matrix of the error variates, which were 

placed in the vector   whose i
th

 element is i. 

We place the nk parameters in the last two dot points into a vector   [

 

  

 
].  

We now need to differentiate the logLikelihood with respect to   
  as well as each parameter 

   in the parameter vector  . These result in a set of equations that need to be solved 

simultaneously: these are sometimes referred to as the score equations and will be denoted by 

UR(…). 

 

Step 1. Differentiating with respect to   
  

 

Differentiating with respect to   
  leads to its score, 

 

  (  
 )  

   

   
   

 

 
(
   

  
  

    

(  
 ) 

) 
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Given the REML estimates for   (which are involved in the matrix  ), the solution of 

  (  
 )    is simply: 

 

 ̂ 
  

    

   
 

 

 

Step 2. Differentiating with respect to   

 

Differentiating with respect to the i
th

 parameter    in  , the vector of variances and 

covariances, leads to its score: 

 

  (  )  
   

   
  

 

 
(
    | |

   
 

    |      |

   
 

     

   
  

 ⁄ ) 

 

The first two derivatives in this expression are evaluated using Jacobi’s formula for the 

derivative of a determinant which, when applied to matrices that are invertible, is the 

following. For a matrix A where A
-1

 exists,  

 

 | |

  
 | |  (   

  

  
) 

 

Another way or writing this result is 

 

    | |

  
   (   

  

  
) 

 

It is also straightforward to prove (by differentiating       ) a second result we need, 

namely: 

 

    

  
     

  

  
    

 

These two results allow us to write the first two derivatives in   (  ) as 
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  (   
  

   
)    ((      )

         

   
)

   (   
  

   
 (      )

  
     

  

   
    ) 

 

Now the trace of a product of matrices is the same for any cyclical change in the order of the 

matrices:    (   )    (   )    (   ); and hence we can move the last two matrices in 

this equation to obtain 

 

  (   
  

   
 (      )

         

   
)    (   

  

   
     (      )

  
     

  

   
) 

   ((        (      )
  

     )
  

   
) 

   ( 
  

   
) 

 

To differentiate      (the third derivative in   (  )) we also use the result for the derivative 

of an inverse of a matrix. Now P was defined as 

    (  
    )

    
          (      )        

so clearly the first expression for P is the easier to use since it involves just one matrix (H) 

containing the parameters. 

 

     

   
 

     (  
    )

    
  

   
      (  

    )
  

 (  
    )

   

(  
    )

    
   

      (  
    )

    
 
  

   
  (  

    )
    

   

      (  
    )

    
 
  

   
  (  

    )
    

   

     
  

   
   

Hence 

  (  )   
 

 
(  ( 

  

   
)    

  

   
    

 ⁄ ) 
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Clearly every assumption that is made about the variance parameters will lead to a different 

matrix H, and hence P, and the normal equations that need to be solved,  

  (  )              

will most likely not have a closed solution. Statistical packages therefore use an iterative 

technique to solve these equations. GenStat, for example, offers the well-known Fisher 

scoring method, but its default algorithm is a newer technique developed by a team of 

statisticians in Australia (Arthur Gilmour and Brian Cullis)  and the UK (Simon Harding and 

Robin Thompson) known as the Average Information Average Information (AI) algorithm 

and sparse matrix methods for fitting the linear mixed model. This generally finds a solution 

for the (co-)variance parameter estimates quickly, but every so often a solution can’t be found 

(generally only for quite complex designs), often because the iteration steps are too large or 

because the solution is on or near the boundary values for (some of) the parameters. There are 

ways to overcome this (eg by increasing the maximum number of iterations or by changing 

the step value). We will look at some designs with closed solutions. 

 

 

5. The REML solution for the fixed effects 

 

The only information on   comes from the conditional distribution of   |   and this can be 

differentiated relatively easily. We will use the form of the logLikelihood containing 

  
    (  

    )
     rather than   

 . The equation to solve is: 

 

   

  
  

 

 
(  ) (      )(    ̂    

    (  
    )

    )   
   ⁄  

 

Hence: 

    ̂    
    (  

    )
      , 

 

 ̂       
    (  

    )
     

 

However      
   and      

   and hence, taking out common factors   
  on the left and   

on the right: 
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 ̂    
     

    (  
    )

    
   

 

Now before each y vector multiply by H and immediately adjust with H
-1

: 

 

 ̂    
         

    (  
    )

    
       

 

 (  
   (  

    )(  
    )

    
  )     

 

Finally, recall that   
    . This term can also be included in this equation without change to 

the equation. At the same time, we take out X as a common factor: 

 

 ̂  (  
    

   (  
    )(  

    )
    

    
  )     

 

 [(  
    )  (  

    )(  
    )

  (  
    )]      

 

The expression inside the square brackets is what we showed to equal (      )  , hence 

 

 ̂  (      )        

 

Note that while the logLikelihood is also a function of   
  and the parameter vector  , both    

and   are of length p and so the logLikelihood can contain no information on these 

parameters. The REML solution for these is used in the REML estimation of the fixed 

effects, so strictly we should write the estimate as 

 

 ̂  (   ̂   )
  

  ̂    

 

Note also the similarity with the least squares and REML solution for   in designs in which 

there is only a random error term assumed N(0, 2
I), in which case     and  

 ̂  (   )    . 
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6. Testing the fixed effects: the Wald test 

 

Firstly, when you have an orthogonal design (no missing values, all levels of all factors 

equally or proportionally replicated) then the F tests from the ANOVA will be identical to 

those from a REML analysis. However, the REML analysis in this section has been 

developed so far for the most general model containing both fixed and random effects as well 

as the random error term. There has been no requirement for equal replication, and no 

restriction on the types of variance models for either the random effects or the random error 

term. 

 

The general test proposed for the linear mixed model is the Wald test (after the statistician 

Abraham Wald). For a single parameter  , if we use the maximum likelihood estimator  ̂ 

whose variance can be evaluated, then the Wald test is 

 

 ̂   

   ( ̂)
   

  

 

This is extended to several parameters. We replace the parameter   by the vector   of length 

k, then the Wald statistic is  

 

( ̂   )
 
(   ( ̂))

  

( ̂   )   
  

 

This is an asymptotic distribution and will be inadequate for small samples. For example, if 

we had an orthogonal design when the F statistic is known to be exact, we can compare the P 

values for varying denominator degrees of freedom. An F distribution is the ratio of two 

independent 
2
 distributions each divided by its degrees of freedom, so the limiting 

distribution of an Fk, distribution will be a   
  ⁄  distribution. 

 

The following tables compare P values from   
  and   

 3⁄  distributions with P values from 

F1, and F3, values for a range of notional observed values of the Wald statistic (1, …, 5, 10, 

15) and increasing denominator degrees of freedom ( = 1, …, 5, 10, 15, 20, 25, 50, 100). 



The Mathematics of REML 

53 

 

You can see that the 
2
 P values are always smaller than the P values from the F distribution, 

and can be very misleading if the F distribution is known to apply. 

 

P values for    and F distributions for possible Wald test values; k=1 

 Possible test value of the Wald statistic 

 

1.0 2.0 3.0 4.0 5.0 10.0 15.0 

P value for   
  ⁄  0.317 0.157 0.083 0.046 0.025 0.002 <0.001 

 P value for F1, 

1 0.500 0.392 0.333 0.295 0.268 0.195 0.161 

2 0.423 0.293 0.225 0.184 0.155 0.087 0.061 

3 0.391 0.252 0.182 0.139 0.111 0.051 0.030 

4 0.374 0.230 0.158 0.116 0.089 0.034 0.018 

5 0.363 0.216 0.144 0.102 0.076 0.025 0.012 

10 0.341 0.188 0.114 0.073 0.049 0.010 0.003 

15 0.333 0.178 0.104 0.064 0.041 0.006 0.002 

20 0.329 0.173 0.099 0.059 0.037 0.005 <0.001 

25 0.327 0.170 0.096 0.056 0.035 0.004 <0.001 

50 0.322 0.163 0.089 0.051 0.030 0.003 <0.001 

100 0.320 0.160 0.086 0.048 0.028 0.002 <0.001 

 

 

P values for    and F distributions for possible Wald test values; k=3 

 Possible test value of the Wald statistic 

 

1.0 2.0 3.0 4.0 5.0 10.0 15.0 

P value for   
  ⁄  0.392 0.112 0.029 0.007 0.002 <0.001 <0.001 

 P value for F1, 

1 0.609 0.470 0.396 0.349 0.315 0.227 0.187 

2 0.535 0.350 0.260 0.206 0.171 0.092 0.063 

3 0.500 0.292 0.196 0.142 0.110 0.045 0.026 

4 0.479 0.256 0.158 0.107 0.077 0.025 0.012 

5 0.465 0.233 0.134 0.085 0.058 0.015 0.006 

10 0.432 0.178 0.082 0.041 0.023 0.002 <0.001 

15 0.420 0.157 0.064 0.028 0.013 <0.001 <0.001 

20 0.413 0.146 0.055 0.022 0.010 <0.001 <0.001 

25 0.409 0.140 0.050 0.019 0.007 <0.001 <0.001 

50 0.401 0.126 0.039 0.013 0.004 <0.001 <0.001 

100 0.396 0.119 0.034 0.010 0.003 <0.001 <0.001 
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7. The Wald test of fixed effects using REML 

 

So, we now wish to test that a linear function of the fixed effects is some fixed value. 

Specifically, we test         for   a matrix of order r×p and   a vector of length r. Then 

following immediately from the result for the distribution of  ̂ we can say that 

 

  (  ̂   ) ( (   ̂   )
  

  )
  

(  ̂   )  ̂ 
 ⁄  

 

 ( ̂   )   ( (   ̂   )
  

  )
  

 ( ̂   )  ̂ 
 ⁄  

 

is the Wald statistic. Note that the REML estimates of the variance parameters are used in 

this expression. 

 

The scaled Wald statistic therefore is F=W/r and this has an asymptotic 
2
 distribution with 

r degrees of freedom. However, for the reasons just pointed out, the P values will be over-

estimates of the true P values, so if the P value of the scaled Wald statistic is calculated using 

this asymptotic distribution then care needs to be taken with the interpretation in many cases. 

 

In 1997 Kenward and Roger (in Small Sample Inference for Fixed Effects from Restricted 

Maximum Likelihood, Biometrics, 53, 983–997) developed a method of improving the P 

values by scaling by a further factor: F* =  F. They developed the equations necessary to 

evaluate  as well as the denominator df (the numerator df = r). They showed by simulation 

that the new P values were much more reliable. In fact, two important properties of this 

approach can be stated: 

 

 For an orthogonal design such as in ANOVA with no missing values, the P values of the 

scaled Wald statistic are exact, that is, they reproduce the ANOVA F P values. 

 

 When r = 1 (that is, testing the equality of two treatment means) the P values of the scaled 

Wald statistic are the same as the Satterthwaite P values from an unpaired t test with 

unequal treatment variances.  
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This implementation is now the default in GenStat. The equations can be very intensive, and 

occasionally fail to solve, in which case GenStat resorts to P values obtained from the 
2
 

distribution. 

 

8. Testing the random effects  

 

Random effects are assumed normally distributed, and hence this section addresses the way 

to compare the LMM under one set of assumptions about the parameters in the variance 

model with the LMM resulting in applying the values assumed under the hull hypothesis. 

Note that this method therefore only applies 

 when models are nested, and 

 the same fixed parameters are in both models. 

 

An examples of nested models is the sequence AR2 compared with AR1 and then with an 

uncorrelated random effect. At time t: 

yt = mean + a1 yt-1 + a2 yt-2  + error (AR2) 

yt = mean + a1 yt-1  + error (AR1, obtained by testing a2 = 0) 

yt = mean + error (uncorrelated, obtained by testing a1 = 0) 

 

An example of models which are not nested is a comparison between a random variate 

assumed to have an equi-correlated structure versus one with an AR1 structure. Both have 

one correlation parameter and the same deviance degrees of freedom. 

 

Deviance is defined as -2×logLikelihood where the logLikelihood is evaluated in terms of the 

REML parameter estimates. Generally the constant in the logLikelihood is dropped because 

the deviance is generally used only when differencing. 

 

So, to test a subset of the variance parameters, start with the full model and obtain a reduced 

model by evaluating the full model using the null hypothesis values of the variance 

parameters. Then  

Change in Deviance = Deviance for reduced model – Deviance for the full model 

which is asymptotically    with df = change in deviance df. 
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For example, for a model with a single random block variance and an error variance with 12 

data values from 4 blocks and 3 treatments per block: 

 

Deviance including the random block effect = 34.49 with 7 df (the FULL model) 

Deviance excluding the random block effect = 51.38 with 8 df (the REDUCED model) 

 

Change in deviance = 51.38 – 34.49 = 16.89 with 8 – 7 = 1 df which is highly significant 

(P<0.001). 

 

For models that are not nested GenStat offers two statistics, the Akaike Information 

Coefficient (AIC) and the Schwarz Information Coefficient (SIC).  

 

Let k be the number of variance parameters in the model. Then 

 

AIC = Deviance + 2 k 

 

There is no test value to compare this to. One proposal is to evaluate exp[(AIC1-AIC2)/2], 

where AIC1 is the smaller and AIC2 the larger from the two models. This ratio can be thought 

of as the probability that the second model minimises any information loss. 

 

The Schwarz Information Coefficient is similar, 

 

AIC = Deviance + ln(n) k 

 

For example, for a model with a single random block variance and an error variance with 12 

data values (and note that ln(12) = 2.49), suppose the deviance is 34.49. GenStat will 

produce: 

 Akaike information coefficient  38.49 
 Schwarz Bayes information coefficient  38.88 
  

Note: omits constants, (n-p)log(2) - log(det(X'X)), that depend only on the fixed model. 
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Examples of correlated error structures 
 

GenStat allows the Random Model to be defined with a reasonable selection of correlations 

structures. The * indicates models that StATS has used relatively frequently. 

 

Model Commonly used for: 

Identity
*
 

independent, normally distributed errors in a regression or ANOVA 

with constant variance 

uniform
*
 

essentially the correlated error structure for a multi-strata design  

(RCB, split-plot etc) 

diagonal
*
 for any design with changing variance 

AR
*
 

autoregressive (AR1 or AR2) serially correlated errors in time 

series/repeated measures; spatial models in field trials 

power
*
 

equivalent to AR1 but allows unequally spaced time points; spatial 

models in field trials with unequally spaced coordinates 

unstructured
*
 

time series/repeated measures data where no assumption is made 

about the correlations over time; MANOVA data 

antedependence
*
 

time series/repeated measures data allowing changing variance, plus:  

order = 1 reproduces sample correlations for neighbouring time 

points; order = 2 reproduces sample correlations for first and second 

neighbouring time points; involves fewer parameters than 

unstructured 

  

ARMA 
a mixture of autoregressive and moving average serially correlated 

errors in time series/repeated measures 

boundedlinear correlations decrease linearly in proportion to ratio of distance apart 

spherical 
correlations decay spherically with distance, more common in soil 

science 

banded correlation 
equally close points have the same correlation, the order determines 

how many are non-zero 

FA & FAequal 
Correlation structure is in terms of a factor analysis model using 

fewer parameters than unstructured; more common in plant breeding 

Fixed correlation matrix specified by user 

MA 
moving average serially correlated errors in time series/repeated 

measures 

circular 

serially correlated errors in time series/repeated measures in which 

the correlation changes with distance in a way that depends on the 

sin
-1

 function; 

linearvariance correlations decay linear with distance, more common in soil science 

 

What follows is a selection of examples that use some of the correlation models above. The 

first half of this manual described the Identity structure. 

 

The examples are mostly illustrated in an earlier manual available on the Resources page on 

www.stats.net.au.  

http://www.stats.net.au/
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Example 1 – uniform structure: randomised block models 

 

Take a randomized complete block (RCB) design with t fixed treatments randomized in each 

of b blocks. Blocks are assumed different from each other and in general are random effects: 

you would like any conclusions you make about your treatments in an experiment conducted 

in blocks in a particular location to apply generally to other locations. ANOVA F tests are 

really only available for fixed effects. For that reason GenStat calculates a variance ratio for 

blocks in ANOVA but does not provide a P value. 

 

It turns out that the test that the treatment means are all equal does not actually depend on 

whether blocks are assumed fixed or random. However, the assumption about fixed or 

random blocks does affect some standard errors. 

 

It also turns out that when blocks are assumed to be random, there are implications that allow 

the model to be specified in several ways. This will also apply to more complex designs such 

as split-plots. Here is the mathematics of this.  

 

Approach 1 Random Model is Block + Error with Block a random effect 

 

The RCB model is 

 

 yij =  + j + i + ij i = 1, …, t (treatments) and j = 1, …, b (blocks)  

 

Arrange the b random block effects into a random vector    (    
   ). The error variate is 

   (       ). 

 

Assume that the data are arranged in a vector with the observations from block 1 at the top, 

block 2 next and so on. Each observation in block 1 has 1 in common, and hence involves a 

random effect (1); but each of these observations is independent of the observations in the 

other blocks. This implies that the design matrix for the random block effects is 
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G=[

       

        

      

       

] 

 

and hence 

 

       
 [

       

        

      

       

]   
      [       ] 

  

where      [ ] represents a diagonal matrix with b (matrix) elements on the leading 

diagonal, each equal to   , a t×t matrix of all 1s (which is also     
 ).  

 

To see whether the assumption about random blocks affects the estimation of the fixed effects 

- recall that  ̂  (      )         - we need to look at the matrix H for the RCB design: 

 

                 
      [       ]         [       ]   

      [       ] 

 

The inverse of   exists and will clearly be a block diagonal matrix with diagonal matrices 

each being the inverse of        
           

     
 . There is a standard formula for such 

a matrix. Let   be a nonsingular matrix and let both   and   be column vectors. 

 

(     )       
         

        
 

 

So, here we have       ,     
   ,     . 

 

(       
     

 )   
 

  
   

 
      

     
  
    

    
  
      

   
 

 
 

  
(   

  
 

(      
 )

  ) 

 

    is a diagonal matrix composed of b such matrices. 

 

Next we look at the individual matrices (      )   and       for random blocks. 
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(      )   (  
 

  
     [   

  
 

(      
 )

  ]  )

  

 

 

   (           [
  

 

(      
 )

  ]  )

  

 

 

Now with our parameterization of the design matrix X has columns each of which contains b 

cells containing 1 and the remaining cells contain 0. Also, an entry of 1 is unique in any row, 

so     must equal    . 

 

Next, for each block in the diagonal matrix above,     simply adds the numbers in the 

columns of the design matrix X in the block under consideration. However, in that (and 

every) block, every entry is 0 except for a single entry of 1. Because of the nature of the 

design matrix X,      [   ] must equal      . Since each of the t rows in    contains b cells 

equal to 1 and the rest 0, we must have 

 

       [  ]      

 

and hence 

       
 

  
(           [

  
 

(      
 )

  ]  )  
 

  
(     

   
 

(      
 )

  ) 

 

 
 

  
(   

  
 

(      
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Again using (     )       
         

        
 we obtain 
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  ) 

 

This is a matrix with diagonal elements equal to   
  ⁄     ⁄  and off-diagonal elements 

  
  ⁄ . 

 

The last term to evaluate is partly resolved since we know      : it consists of t rows, each 

having b cells equal to  (    
 (      

 )⁄ )   ⁄  and t(b-1) cells all equal to 

    
 (      

 )⁄   ⁄ . The positions of these cells are dictated by the design matrix X, 

however when       is post-multiplied by y, the i
th

 row results in the i
th

 treatment mean  ̅  

as well as the grand mean  ̅. We need to introduce the vector of data means which we’ll 

denote as  ̅ 
  ( ̅     ̅ ). Then 

 

       
 

  
 ̅  

    
 

  (      
 )

 ̅   

 

Combining the two terms and replacing terms like    ̅  by   ̅   leads to 
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SO under the assumption that blocks are random, the REML estimates of the treatment means 

are the sample means, just as they are under the assumption that blocks are fixed. 
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However the standard errors of the means are larger under the random blocks model 

compared to the fixed blocks model. This is not surprising, since in order to be applicable to 

other blocks one needs to be more cautious in estimating individual treatment means. 

Nevertheless, the standard errors of differences of means are the same under both 

assumptions. 

 

Standard error of means 

 

In terms of the model, the i
th

 sample mean  ̅  is  ̅      ̅       ̅ and so the standard 

error of the sample mean should turn out to be   
  ⁄     ⁄  since each mean in the 

expression for  ̅  is averaged over b units. The mathematics proves this: 

 

   ( ̂)     ((      )        ) 

 

 (      )          ( )    (      )   

 

 (      )            (      )   

 

 (      )  (      )(      )   

 

 (      )   

 

We saw previously that this is a matrix with diagonal elements equal to   
  ⁄     ⁄  and 

off-diagonal elements   
  ⁄ . The non-zero off-diagonal elements are the result of the 

common random term  ̅ in each sample mean, resulting in correlated sample means. 

 

Standard error of differences of means 

 

In terms of the model, the difference between the i
th

 sample mean  ̅  and the k
th

 sample mean 

 ̅  is  ̅   ̅           ̅    ̅. Clearly the common random term  ̅ has disappeared from 

this difference and you would not expect that   
  would feature in the sed value. The 

mathematics is as follows. 
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Define a contrast between the i
th

 sample mean  ̅  and the k
th

 sample mean  ̅  as the vector   

having a value of +1 alongside the position of the i
th

 mean and a -1 alongside the position of 

the k
th

 mean. Note that        and      . 

 

Then 

   (   ̂)     (  (      )        ) 

 

   (      )          ( )    (      )    

 

   (      )      
  

 
(   

  
 

  
  )  

 

 
  

 
    

  
 

 
      

   

 
 

 

which is identical to the sed under a fixed block assumption. 

 

 

Approach 2 Random Model is simply Error with the var(Error) an uniform 

correlation matrix. 

 

The assumptions for a random block effect are that for each j,     (     
 ), and is 

independent of the error variates which are all independent,      (     ). Hence for each 

observation in every block, 

 

   (   )    (  )     (   )    
     . 

 

If we now take two observations in the same block (say block j) we have the random effect    

in common. Hence for the i
th

 and k
th

 observations in block j we have 

 

     (       )      (             )     (  )    
  

 

all other terms being uncorrelated. 
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So, two observations in the same block have equal variances (  
     ) but are correlated, 

and every correlation within a block is the same, namely the ratio of the block variance to the 

combined (block + error) variance: 

 

    (       )  
  

 

  
     

        

 

Such a model is known as the uniform correlation matrix and for each block has the structure 

 

         (  
     ) [

    
    
    
    

] 

 

Observations in different blocks are uncorrelated, and so the full design variance matrix is a 

block diagonal matrix with b matrices on the diagonal all equal to         : 

 

     ( )     [                   ]          

 

With Approach 1 where we had a random block effect the variance matrix turned out to be 

 

                 
      [       ]         [       ]   

      [       ] 

 

In this structure, the diagonal elements are (     
 ) and the off-diagonal elements just   

 . 

 

These two variance structures are identical. 

 

That implies we have a choice of ways to describe a random block effect in a designed 

experiment. The second method is important when we come to use REML to fit a spatial 

model such as a row × column AR1 × AR2 structure. Trying to fit a Block effect in the 

Random Model as well as an AR1 × AR2 correlation structure leads to a redundancy. 
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Example 2 diagonal matrix: 

One-way treatment design with changing treatment variances 

 

The most common use of the Diagonal matrix for the error variance is when some or all of 

the treatment variances in a designed experiment change. A simple example is the unpaired t 

test in which the two treatment variances differ. Mention has been made previously to the 

property that the implementation of an adjusted scaled Wald statistic produces the test and P 

values exactly (through t
2
 = F). An extension of this is to a treatment factor with t levels and 

some or all of the variances differ.  

 

Take the lengths in ocular units (x 0.114 = mm) of pea sections grown in tissue culture with 

auxin present (Sokal & Rohlf 3rd Ed. page 218). This is a completely randomized design. 

 

Rep Control 2% glucose 2% fructose 1% glucose + 1% fructose 2% sucrose 

1 75 57 58 58 62 

2 67 58 61 59 66 

3 70 60 56 58 65 

4 75 59 58 61 63 

5 65 62 57 57 64 

6 71 60 56 56 62 

7 67 60 61 58 65 

8 67 57 60 57 65 

9 76 59 57 57 62 

10 68 61 58 59 67 

mean 70.1 59.3 58.2 58.0 64.1 

variance 15.878 2.678 3.511 2.000 3.211 

 

It is not hard to see that the control variance is different to that of the four sugar treatments, 

which themselves are all alike. It is not uncommon for a control group to have different 

statistical properties to those of a treated group. For example, in a medical trial of patients 

with back pain, if a treatment that actually works is given to patients, and if left untreated the 

back pain persists, then one would expect the variance to change over time for the treated 

group more so than for the untreated group. Indeed, the variance may be zero for a group who 

have no back pain after treatment! 
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In agricultural trials it is not uncommon for treatment variances to change. Such will often be 

the case in density experiments (treatments with different planting rates) and in experiments 

where crops are sampled at different times in the growth cycle of the plant.  

 

So the Diagonal choice for a treatment factor with changing variance is setting the following 

variance matrix for the treatment part of the error structure: 

 

      [  
   

    
 ] which allows all 5 treatment variances to change 

 

      [  
   

    
 ] which allows the control variance only to differ 

 

In GenStat’s output the estimates are labelled d_1, d_2, and so on. 

 

As in any GenStat program you need to specify the error structure in order to define the 

correlation matrix for that structure. This is done in the Random Model of the Linear Mixed 

Model menu. All the data values need to be indexed, which means that if you have 5 

treatments each with 10 replicates then all 50 data values need to be indexed using factors of 

appropriate length. 

 

So you could set up a factor of length 50 called Replicate. That, however, would not allow 

you to define the changing variance because GenStat would not know which treatment each 

of the 50 data values came from. You could simply append the treatment factor (call it Sugar 

here, with 5 levels) to the Replicate factor, but that represents too many indices and produces 

confusing output So it’s better to set up a Rep factor, say, which indexes from 1 to 10 only. 

Then the Random Model would be Rep.Sugar which indexes 10×5 = 50 data points. Then 

select Correlated Error Terms… and you’ll notice that GenStat’s default is 

Rep.Sugar: Id × Id 

Recall that Id represents an identity matrix (so independent error) of order appropriate to the 

length of the corresponding factor. We need to select the Sugar factor, then select Diagonal 

from the drop-down list of choices, return to the main menu and run the program. 
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Residual variance model 
  
Term Factor Model(order) Parameter Estimate s.e. 
Rep.Sugar Sigma2 1.000 fixed 
 
 Rep Identity -         - - 
 Sugar Diagonal d_1  15.88  7.48 
     d_2  3.511  1.655 
     d_3  2.000  0.943 
     d_4  2.678  1.262 
     d_5  3.211  1.514 
 

Estimated covariance models 

  
Variance of data estimated in form:  
  
V(y) = Sigma2.R 
  
where: V(y) is variance matrix of data 
       Sigma2 is the residual variance 
       R is the residual covariance matrix 

 

If you also select the option Covariance Model in Options you’ll notice that GenStat tells 

you the variance structure used. You’ll also notice that these estimates are the sample 

variances of each of the 5 treatments in this experiment. 

 

GenStat offers a REML-based menu, Meta Analysis > REML of Multiple Experiments…, 

that gives a different variance for each level of a defined factor. Simply enter the fixed and 

random models (the latter can be different at each level of the factor that defines how the 

variances change) and indicate the factor that defines how the variances change. 

 

For the example we obtain the five individual variance estimates immediately: 

 

Residual model for each experiment 
  
Experiment factor: Sugar  
  
Experiment Term Factor Model(order) Parameter Estimate s.e. 
Control Residual Identity Variance 15.880 7.480 
Fructose Residual Identity Variance 3.511 1.655 
GlucFruc Residual Identity Variance 2.000 0.943 
Glucose Residual Identity Variance 2.678 1.262 
Sucrose Residual Identity Variance 3.211 1.514 
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The way to fit only two variances, one for the control group and the other for each of the four 

sugar treatments, follows similar lines. A factor needs to be set up that indexes a control data 

value or one from any of the four sugar treatments, so a 0/1 factor column. We’ll call this  

Ctrl vs Sugar (with 0 = Control and 1 = Sugar). Then use the Meta Analysis Analysis > 

REML of Multiple Experiments… menu to obtain: 

 

Residual model for each experiment 
  
Experiment factor: Ctrl_vs_Sugar  
  
Experiment Term Factor Model(order) Parameter Estimate s.e. 
Control Residual Identity Variance 15.880 7.480 
Sugar Residual Identity Variance 2.850 0.672 

 

Notice: 

 

 In the first analysis, the 5 estimates of variance are identical to the respective sample 

variances. 

 

 In the second analysis, the estimate 2.85 is actually the (weighted) average of the four 

sugar treatment variances 2.678, 3.511, 2.000, 3.211, and is identical to the Residual MS 

from an ANOVA of just the four sugar treatments: 

 

Analysis of variance 

 
Source of variation d.f. s.s. m.s. v.r. F pr. 
Sugar 3  245.000  81.667  28.65 <.001 
Residual 36  102.600  2.850     
Total 39  347.600 

 

 If you use the “nested” fixed model Ctrl vs Sugar/Sugar, you obtain (1) a test of the 

Control mean compared to the mean of the four Sugar treatments, and (2) a test of 

equality of the four treatment means: 

 

Tests for fixed effects 

  
Sequentially adding terms to fixed model 
  
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Ctrl_vs_Sugar 62.71 1 62.71 9.8  <0.001 
Ctrl_vs_Sugar.Sugar 85.96 3 28.65 36.0  <0.001 
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Notice also that the F statistic for comparing the four sugar means (it’s actually labelled 

Ctrl_vs_Sugar.Sugar) is 28.65, identical to the F test from the ANOVA of the four sugar 

treatments. 

 

The first F statistic, 62.71, with 9.8 denominator degrees of freedom, is actually the 

Sattherthwaite t test (squared to produce an F statistic): 

 

 Control mean = 70.10, variance = 15.878, reps = 10, df =   9 

Overall Sugar mean = 59.90, variance =   2.850, reps = 40, df = 36 

 

  
(           )

√      
   

     
  

                   

with denominator df given by 

   
((        ⁄ )  (       ⁄ ))

 

(        ⁄ )
 

 
⁄  

(       ⁄ )
 

  
⁄

       

GenStat rounds this down to 9.8 in its output. 

 

 The three models (independence, separate variances for control and combined sugar, 

separate variances for all 5 “treatments”) are easily compared by change in deviance: 

  

variance model deviance d.f. P 

1. single variance 132.86 44 

 2. two variances, one for control, one for others 119.10 43 

 Change (2 versus 1) 13.76 1 <0.001 

3. Five different variances 118.30 40 

 Change (3 versus 2) 0.80 3 0.849 

 

It appears unnecessary to have separate variances for all 5 treatments groups (P=0.849) but a 

separate variance is required for the control (P<0.001).  
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Example 3 Simple random sampling with AR(1) correlated errors 

 

Measurements made over time on a single individual will be serially correlated. The 

discipline of Time Series was developed to estimate serial correlations. Basically,  

 

An autoregressive model (with no seasonal trend) of order (lag) p is one in which the 

observation at time t depends directly on the previous p observations through the model 

 

          ∑      

 

   

    

 

The error terms are normally distributed, independent, with means 0 and variances 
2
. 

 

So an AR(1) (or AR1) model has just one lag,                    . For simplicity write 

   as   (just to avoid subscripts). Then                    and 

 

   (  )     (    )     which implies that var(  ) =   (    ), 

     (       )       (               )      

     (       )       (               ) 

    ( (          )           )       

and so on, for k lags we have 

     (       )       

 

Thus the model for           can be re-written in matrix form as         , where 

 

   (  )    

[
 
 
 
 

         

        

         

     
              ]

 
 
 
 

 

 

Time series methodology basically delivers maximum likelihood estimates of  ,   and   . 

REML estimates are available in GenStat. The next more complex model, the AR2 structure, 

is also available. The form of    (  ) for the AR(2) structure is the following. 
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Let     (       )   ( ). Then (eg http://econ.ucsd.edu/muendler/teach/00s/ps1-prt1.pdf, 

page 3): 

 

 ( )    

 ( )  
  

    
 

and the lag-s correlation is given by the second-order difference equation 

 ( )     (   )     (   ) 

 

Specifically, 

 

 ( )  
  

    (    )

    
  

 

 ( )  
  

      (    )

    
   

 

In comparison to the correlation matrix for an AR(1) function it is hard to assess whether the 

AR(2) process applies just by viewing the observed correlation matrix. 

 

Consider the following time series temperature data taken on a single individual at rest over 

20 equally spaced time points: 

time temperature time temperature 

1 37.70 11 35.18 

2 38.08 12 37.03 

3 38.70 13 35.92 

4 38.30 14 35.19 

5 36.47 15 34.33 

6 35.20 16 33.96 

7 34.37 17 33.56 

8 34.88 18 34.77 

9 33.54 19 34.95 

10 33.75 20 35.64 

 

The time series plot shows a much smoother trend in temperature than would be expected by 

chance:  

http://econ.ucsd.edu/muendler/teach/00s/ps1-prt1.pdf
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Matrix derivation for AR(1) process 

 

The general model           is simple for this example. There is just the one fixed 

parameter  so the matrix     . There are no random effects, and the error matrix takes 

the form 

 

   (  )    

[
 
 
 
 

         

        

         

     
              ]

 
 
 
 

     

 

The inverse of the matrix   has a simple form in terms of the parameter  . It has been shown 

that     consists of just 3 different elements. Every element in the matrix is 0 except for the 

diagonal elements and the leading off-diagonal elements: 

        
 

    
        

  

    
     

    

    
           

so specifically: 
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[
 
 
 
 
 
       

           

          
      
          
       ]

 
 
 
 
 

 

 

From this structure we obtain   |   |  (   )  (    ). 

 

Since      then        is simply the sum of all the elements in     and after evaluation 

 

       
  (   ) 

   
  

 

The matrix           (      )        is a little more complex, has only seven 

different elements and takes the following form: 

 

  
 

(    )(  (   ) )

[
 
 
 
 
 
 
 
        
        

       
        
        
        
        
        ]

 
 
 
 
 
 
 

 

where  

  (   )  (   ) , 

     (   )  (   )   

   (   )  

   (   ) 

  (   )  (   )  (   )(   )   

    (   )  (   )      

   (   )  

 

This leads to a simple structure for  

          
 

 
((   )   (  

 )     | |     |      |        
 ⁄ ) 

that does not depend on matrix expressions in computer packages. 
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ML estimates of parameters 

In GenStat we simply choose Stats > Time Series > ARIMA Model Fitting. Select the data, 

and to fit an AR1 process change the Number of Autoregressive Parameters to 1. 

 

Time-series analysis 

 
Residual deviance = 18.48 
Innovation variance = 0.9753 
  
Number of units present = 20 
Residual degrees of freedom = 18 
  
  

Summary of models 

  
 Orders: Delay AR Diff MA Seas 
Model Type B P D Q S 
  
_erp ARIMA -  1  0  0  1 
  
  

Parameter estimates 

  
Model Seas. Diff. Delay Parameter   Lag Ref Estimate   s.e. t 
 Period Order               
  
Noise  1  0 - Constant -  1  35.892  0.952  37.69 
    Phi (AR)  1  2  0.802  0.139  5.78 

 

The maximum likelihood estimates of the mean is 35.892, and that for the autocorrelation 

(lag-1 correlation) is 0.802. In the language of time series, the innovative variance, 0.9753, is 

the variance of the independent errors (t) in the model Yt =  Yt-1 + t. The variance of the 

data is related to this by the equation var(Y) = 

var(Y) + var(t), or var(Y) = var(t)/(1-


). 

Thus from the output we calculate the estimate of this variance as 0.9753/(1-0.802
2
) = 2.69. 
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REML estimates of parameters 

To obtain the output for an AR1 error structure for the data we need a factor that indexes 

from 1 to (in this case) 20; we will call this factor Time and the data Temp. Choose Stats > 

Linear Mixed Models, enter the data and Time as the Random Model: Then select an AR 

order 1 structure from the drop-down list of models. 

 

REML variance components analysis 

  
Response variate: Temp 
Fixed model: Constant 
Random model: Time 
Number of units: 20 
  
Time used as residual term with covariance structure as below 
  
Sparse algorithm with AI optimisation 
  
  

Covariance structures defined for random model 
  
Covariance structures defined within terms: 
  
Term Factor Model Order No. rows 
Time Time Auto-regressive (+ scalar) 1 20 
  
  

Residual variance model 
  
Term Factor Model(order) Parameter Estimate s.e. 
Time    Sigma2 4.600  8.260 
 Time AR(1) phi_1  0.8938  0.1929 
  
  

Deviance: -2*Log-Likelihood 

  
 Deviance d.f. 
  18.26  17 
   
Note: deviance omits constants which depend on fixed model fitted. 
  
  

Table of predicted means for Constant 
  
  36.08    Standard error:  1.492 

 

The REML estimate of the autocorrelation is 0.8938, the REML variance of the data is 

estimated as 4.6 and that for the mean is 36.08. The Deviance is -2 × Residual LogLikelihood. 
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Checking the variance parameters of the model  

 

For the example above we assumed an AR(1) structure for temperature. We can check (using 

change in deviance) whether an independence model or an AR(2) structure is significantly 

better. The series of nested models (from most complex) is AR order 2, AR order 1 and Id. 

Construct deviance differences and obtain the P values from 
2
 distributions. 

 

Unfortunately, GenStat’s routine fails to converge for an AR2 structure for these data. To 

check that a more simple independence structure does not apply we have the following: 

 

Model deviance df P 

AR2 N/A  

 AR1 40.43 18  

Independence 18.26 17 

 Difference 22.17 1 <0.001 

 

Thus an AR1 structure for the data is a strongly significantly better assumption than one of 

independence. 
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Example 4 Repeated measures data, unstructured/antedependence 

structures 

 

Often a researcher will measure the same experimental units over time. In pre-computer times 

a standard split-plot analysis was used with time as the split factor. We have seen that such a 

model implies that the data are uniformly correlated over time. This is not plausible for many 

experimental situations: it is more likely that the correlation is stronger for observations taken 

closer together than further apart. Models that are commonly used include AR1 and AR2 

structures, unstructured and antedependence order 1 and order 2 structures. 

 

One should also anticipate a variance that changes over time. For example, if measurements 

are made on the growth of a single animal over the exponential phrase of growth, the 

variance will most likely increase with time. On the other hand patients who undergo 

treatment for back pain are likely to have a reduction in back pain, and if the treatment is 

100% successful the variance at the end of treatment should be 0! 

 

GenStat has a specialised menu for simple one-way blocked or unblocked designs that offer 

the usual correlation models mentioned above as well as possible changing variance. To 

demonstrate the range of models we will consider GenStat’s example “studying the effects of 

preserving liquids on the enzyme content of dog hearts”. The variate measured was the 

percentage of total enzyme in the heart, at one and two hourly intervals (hourly from 0 hours 

to 6 hours, then at 8, 10 and 12 hours) during a twelve hour period following initial 

preservation. There were two treatments labelled A and B each at two levels. Only 23 hearts 

were used, 6 hearts for three treatment combinations and 5 hearts for the other. The design is 

therefore unbalanced.  

 

 A1, B1 A1, B2 A1, B3 é 

Time Heart 1 Heart 2 Heart 3 é 

1 85.51 76.54 66.03 é 

2 74.56 72.77 66.67 é 

3 84.25 86.93 77.57 é 

é é é é é 
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The time intervals are not equally spaced, and hence and AR1 and AR2 structure are 

inappropriate. A power model is a possible alternative to an AR1 model, but this is a very 

rigid structure and generally antedependence and unstructured models are better. 

Note that the nature of the data (the percentage of total enzyme in the heart) suggests a 

changing variance structure, since the variance of a percentage is often a function of the mean 

percentage. Both antedependence and unstructured models incorporate a changing variance 

over time, but occasionally we might need to allow the variance to change over treatments as 

well. 

 

(a) Unstructured model 

 

Use Stats > Repeated Measurements > Correlation Models by REML. Our data are actually 

stacked, so choose Data in One Variate… Enter the data (ATP). The Subjects box is asking 

for a factor that indicates the various experimental units; for this example we use heart. There 

is a factor already set up for the Time Points (time). 

 

There are 10 time points and 10×23 = 230 data values so 229 df for the Total MS. An 

unstructured covariance model for the 10 time points has 10×11/2 = 55 individual 

parameters, and hence there should be enough degrees of freedom to estimate the 

unstructured model.  

 

The parameter estimates are printed in the Output window in column form: 

 

Residual variance model 
  
Term Factor Model(order) Parameter Estimate s.e. 
heart.time    Sigma2 1.000 fixed 
 heart Identity -         - - 
 time Unstructured v_11  17.41  5.65 
     v_21  7.140  5.409 
     v_22  29.01  9.41 
     v_31  5.549  6.176 
     v_32  12.26  8.29 
     v_33  39.86  12.93 
     v_41  5.790  6.102 
   etc 
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Here v_11 represents the variance at time 1, v_22 the variance at time 2, and so on; v_21 

represents the covariance at times 1 and 2, v_31 the covariance at times 1 and 3, and so on. 

There is an Option to tick (Covariance Model) to have this printed in matrix form: 

  



The Mathematics of REML 

80 

 

Estimated covariance models 

  
Variance of data estimated in form:  
  
V(y) = Sigma2.R 
  
where: V(y) is variance matrix of data 
       Sigma2 is the residual variance 
       R is the residual covariance matrix 
  
  
Residual term: heart.time 
  
Sigma2: 1.000  
  
R uses direct product construction 
  
Factor: heart 
Model:  Identity ( 23 rows) 
  
Factor: time 
Model:  Unstructured             
  
Covariance matrix: 
  
  
 1  17.4                   
 2  7.1  29.0                 
 3  5.5  12.3  39.9               
 4  5.8  10.4  10.3  38.7             
 5  19.4  21.4  27.7  -1.2  105.1           
 6  4.3  8.8  7.7  8.0  -2.0  45.3         
 7  9.2  27.7  30.2  9.8  41.6  39.4  141.4       
 8  6.0  28.6  45.6  30.1  66.3  37.2  99.5  159.7     
 9  -2.7  16.1  15.2  -5.5  34.9  13.7  72.2  73.0  126.2   
 10  7.4  8.4  1.4  0.8  -2.3  42.3  105.6  59.2  79.1  158.0 
   1  2  3  4  5  6  7  8  9  10 

 

Thus the variances over the 10 time points vary from 17.4 at time 0 (the times are labelled 1 

to 10, you need to look at the actual ,time points in the spreadsheet) to 158.0 at 12 hours; 

vaguely increasing with the variance at 6 hours low. 

 

It is instructive to turn this into a correlation matrix (there is a template for this available in 

the workshop): 
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Correlations over time 

 

1 2 3 4 5 6 7 8 9 10 

1 * 

         2 0.32 * 

        3 0.21 0.36 * 

       4 0.22 0.31 0.26 * 

      5 0.45 0.39 0.43 -0.02 * 

     6 0.15 0.24 0.18 0.19 -0.03 * 

    7 0.19 0.43 0.40 0.13 0.34 0.49 * 

   8 0.11 0.42 0.57 0.38 0.51 0.44 0.66 * 

  9 -0.06 0.27 0.21 -0.08 0.30 0.18 0.54 0.51 * 

 10 0.14 0.12 0.02 0.01 -0.02 0.50 0.71 0.37 0.56 * 

 

You cans see that a power model would not be a good approximation here. For example, if 

0.3 was a common autocorrelation (it’s not, they vary from -0.03 to +0.66) you would expect 

to see a pattern 0.3, 0.09, 0.027, … whereas the correlations between time 1 and times 2, 3, 

… are 0.32, 0.21. 0.22, 0.45 etc. 

 

The deviance for this model is: 

 

Deviance: -2*Log-Likelihood 

  
 Deviance d.f. 
  960.98  135 
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(b) Antedependence models 

Antedependence models are a way of allowing variances to change over time as well as 

reproducing the closest neighbouring correlations (order 1) or two closest neighbouring 

correlations (order 2) of the unstructured model, but with fewer parameters. An 

antedependence structure of order r is defined by the fact that the i
th

 observation (i > r) given 

the r preceding ones is independent of all further observations. GenStat allows r = 1 or 2. 

This definition implies a structure for the correlation matrix based on the Cholesky 

decomposition of its inverse.  

 

For an order-1 antedependence model, (1) the variances change across time, and (2) the 

correlation structure takes the following form: 

 

     

[
 
 
 
 

 
   

       

             
     ]

 
 
 
 

 

 

Mathematically, the antedependence structure takes the form              , where   

is a diagonal matrix and   is such that 

 

  

[
 
 
 
 
       
       
       
     
     ]

 
 
 
 

 for order 1, and   

[
 
 
 
 
         
         
         

     
     ]

 
 
 
 

 for order 2. 

 

For an order 1 structure, the correlation between neighbouring-1 time points are the same as 

the leading off-diagonal elements of the unstructured correlation matrix; for an order 2 

structure, the correlation between neighbouring-1 and -2 time points are the same as the two 

leading off-diagonal elements of the unstructured correlation matrix. The remaining 

correlations then decline in proportion to the set of correlations with earlier times. 

 

Before looking at the output for this example, we should investigate (by change in deviance)  

whether an order-1 or order-2 model is required, and whether a uniform correlation should be 

added to the heart factor, which, from our discussion on random blocks, is equivalent to 
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setting heart as a random factor. The purpose of this manual though is to explain the output, 

so we will look just at the antependence-2 output. 

 

REML variance components analysis 

  
Response variate: ATP 
Fixed model: Constant + time + A + B + time.A + time.B + A.B + time.A.B 
Random model: heart.time 
Number of units: 230 
  
heart.time used as residual term with covariance structure as below 
 

Covariance structures defined for random model 
  
Covariance structures defined within terms: 
  
Term Factor Model Order No. rows 
heart.time heart Identity 0 23 
 time Antedependence 2 10 
  

Residual variance model 
  
Term Factor Model(order) Parameter Estimate s.e. 
heart.time    Sigma2 1.000 fixed 
 heart Identity -         - - 
 time Antedependence(2)  
   dinv_1  0.05744  0.01869 
     dinv_2  0.03835  0.01247 
     dinv_3  0.02918  0.00955 
     dinv_4  0.02942  0.00959 
     dinv_5  0.01191  0.00390 
     dinv_6  0.02292  0.00753 
     dinv_7  0.01120  0.00371 
     dinv_8  0.01149  0.00385 
     dinv_9  0.01192  0.00390 
     dinv_10  0.009353  0.003034 
     u_12  -0.4101  0.2826 
     u_13  -0.1616  0.3451 
     u_23  -0.3829  0.2642 
     u_24  -0.2875  0.2702 
     u_34  -0.1687  0.2286 
     u_35  -0.7544  0.3584 
     u_45  0.2308  0.3565 
     u_46  -0.2055  0.2511 
     u_56  0.01616  0.15237 
     u_57  -0.4122  0.2159 
     u_67  -0.8861  0.3323 
     u_68  -0.2745  0.3848 
     u_78  -0.6275  0.2141 
     u_79  -0.3365  0.2455 
     u_89  -0.2474  0.2267 
     u_810  -0.1149  0.2347 
     u_910  -0.5601  0.2596 

  
  

              

These are the estimates of the 

diagonal elements of   in the 

defining equation 

 

              

These are the non-zero 

estimates of the special matrix 

  in the defining equation 
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This list of estimates is used then to construct the estimates covariance matrix using the 

defining equation              . Again, ticking the option Correlated Model in 

GenStat prints the first 10 rows of this matrix. 

 

Estimated covariance models 

  
Variance of data estimated in form:  
  
V(y) = Sigma2.R 
  
where: V(y) is variance matrix of data 
       Sigma2 is the residual variance 
       R is the residual covariance matrix 
 
Residual term: heart.time 
  
Sigma2: 1.000  
  
R uses direct product construction 
  
Factor: heart 
Model:  Identity ( 23 rows) 
  
Factor: time 
Model:  Antedependence           
  
Covariance matrix: 
 
 1  17.4                   
 2  7.1  29.0                 
 3  5.5  12.3  39.9               
 4  3.0  10.4  10.3  38.7             
 5  3.5  6.8  27.7  -1.2  105.1           
 6  0.6  2.0  1.7  8.0  -1.9  45.3         
 7  1.9  4.6  12.9  6.6  41.6  39.3  141.3       
 8  1.4  3.5  8.5  6.3  25.6  37.1  99.5  159.7     
 9  1.0  2.4  6.5  3.8  20.3  22.4  72.2  73.0  126.2   
 10  0.7  1.7  4.6  2.8  14.3  16.8  51.9  59.2  79.1  158.0 

   1  2  3  4  5  6  7  8  9  10 

 

Compare the covariance matrix to that from the unstructured structure. The variances are 

identical, and as the output above is for an order-1 antedependence model, the two leading 

off-diagonal elements (in bold) are also identical. 

 

 1  17.4                   
 2  7.1  29.0                 
 3  5.5  12.3  39.9               
 4  5.8  10.4  10.3  38.7             
 5  19.4  21.4  27.7  -1.2  105.1           
 6  4.3  8.8  7.7  8.0  -2.0  45.3         
 7  9.2  27.7  30.2  9.8  41.6  39.4  141.4       
 8  6.0  28.6  45.6  30.1  66.3  37.2  99.5  159.7     
 9  -2.7  16.1  15.2  -5.5  34.9  13.7  72.2  73.0  126.2   
 10  7.4  8.4  1.4  0.8  -2.3  42.3  105.6  59.2  79.1  158.0 

   1  2  3  4  5  6  7  8  9  10 
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Had an order-1 model been requested the covariance matrix would agree only on the diagonal 

and leading off-diagonal: 
 

 1  17.4                   
 2  7.1  29.0                 
 3  3.0  12.3  39.9               
 4  0.8  3.2  10.3  38.7             
 5  0.0  -0.1  -0.3  -1.2  105.1           
 6  0.0  0.0  0.0  0.0  -2.0  45.3         
 7  0.0  0.0  0.0  0.0  -1.7  39.4  141.4       
 8  0.0  0.0  0.0  0.0  -1.2  27.7  99.5  159.7     
 9  0.0  0.0  0.0  0.0  -0.5  12.7  45.5  73.0  126.2   
 10  0.0  0.0  0.0  0.0  -0.3  7.9  28.5  45.7  79.1  158.0 

   1  2  3  4  5  6  7  8  9  10 

 

There are t(t+1)/2 parameters involved in the unstructured model for a time series with t time 

points. In the case of the antedependence models, for the loss of precision on lower-order 

correlations, we have obtained a correlation structure with many fewer parameters: for order-

1 there are t+(t-1) = 2t-1 (for t=10, 19 as opposed to 55 is about one-third the number); for 

order-2 there are t+(t-1)+(t-2)  = 3(t-1) (for t=10, 27 as opposed to 55 is about one-half the 

number). 
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Example 5 Spatial Models, AR1 × AR1 structure 

Again we will use an example in GenStat’s guide on REML, the Slate Hall data set. The field 

layout and data are as follows. We have reversed rows and columns in order that the table fit 

the page. 

 

Yield 

  Row 

Column 1 2 3 4 5 6 7 8 9 10 

1 10.03 15.31 11.26 12.61 14.58 16.23 13.31 12.11 13.88 14.43 

2 13.56 15.40 14.00 14.23 20.36 18.62 14.17 14.11 14.53 16.67 

3 14.12 12.50 13.29 11.10 21.19 16.45 16.11 11.83 13.84 15.49 

4 12.39 16.58 12.87 17.35 19.12 18.88 14.54 15.50 16.69 14.59 

5 15.08 11.85 15.55 16.17 18.93 15.27 17.90 16.60 17.38 17.22 

6 19.67 16.05 13.95 18.20 17.48 16.06 17.67 15.26 18.45 15.83 

7 15.72 15.50 16.96 13.51 14.50 18.42 19.17 16.81 17.00 14.90 

8 19.69 15.00 15.70 12.97 17.40 11.86 12.64 15.45 15.28 16.07 

9 17.47 16.42 14.04 14.12 14.50 14.62 10.60 12.90 13.73 13.15 

10 15.98 15.04 12.85 15.06 15.23 12.42 9.51 9.76 12.40 11.74 

11 16.30 16.80 14.73 15.12 13.64 10.82 11.30 12.40 12.52 14.43 

12 16.33 15.26 17.61 13.55 16.90 13.04 12.66 11.81 15.91 16.49 

13 12.55 14.52 16.95 15.24 13.34 12.67 12.89 9.17 14.28 14.07 

14 12.77 14.80 13.64 14.78 12.39 12.66 12.60 12.87 15.09 13.15 

15 15.72 14.82 17.90 13.71 15.57 12.00 11.74 9.75 12.73 13.18 

 

Allocation of varieties and replicates 

  Row/Replicate outline marked  

Column 1 2 3 4 5 6 7 8 9 10 

1 1 6 21 11 16 3 1 5 2 4 

2 2 7 22 12 17 18 16 20 17 19 

3 4 9 24 14 19 8 6 10 7 9 

4 3 8 23 13 18 13 11 15 12 14 

5 5 10 25 15 20 23 21 25 22 24 

6 19 8 11 22 5 16 12 4 25 8 

7 23 12 20 1 9 24 20 7 3 11 

8 2 16 24 10 13 10 1 18 14 22 

9 6 25 3 14 17 13 9 21 17 5 

10 15 4 7 18 21 2 23 15 6 19 

11 18 5 6 24 12 10 12 19 21 3 

12 25 7 13 1 19 4 6 13 20 22 

13 9 16 22 15 3 17 24 1 8 15 

14 11 23 4 17 10 11 18 25 2 9 

15 2 14 20 8 21 23 5 7 14 16 
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This design is actually a balanced lattice but it appears to be more successfully modelled as a 

spatial model with AR1 structures for both rows and columns. Again, we are not concerned 

with analysing the data so much explaining the GenStat output. 

 

The Linear Mixed Models menu can, of course, be used to analyse the data spatially, but 

GenStat offers as special menu with the information required neatly arranged for you. Choose 

Stats > Mixed Models (REML) > Spatial Models. The columns 1 to 15 make up the 

fieldcolumn factor, and the rows 1 to 10 make up the fieldrow factor. 

 

 

 

So this menu simply avoids having to set up the Random Model (which would be 

fieldrow.fieldcolumn) in the more general menu, using AR1 as the correlation model for both 

factors. 

 

REML variance components analysis 

  
Response variate: yield 
Fixed model: Constant + variety 
Random model: fieldrow.fieldcolumn 
Number of units: 150 
  
fieldrow.fieldcolumn used as residual term with covariance structure as below 
  
Sparse algorithm with AI optimisation 
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Covariance structures defined for random model 
  
Covariance structures defined within terms: 
  
Term Factor Model Order No. rows 
fieldrow.fieldcolumn fieldrow Auto-regressive (+ scalar) 1 10 
 fieldcolumn Auto-regressive 1 15 
 

Residual variance model 
  
Term Factor Model(order) Parameter Estimate s.e. 
fieldrow.fieldcolumn 
    Sigma2 3.876  0.775 
 fieldrow AR(1) phi_1  0.4586  0.0826 
 fieldcolumn AR(1) phi_1  0.6838  0.0633 
 

Estimated covariance models 

  
Variance of data estimated in form:  
  
V(y) = Sigma2.R 
  
where: V(y) is variance matrix of data 
       Sigma2 is the residual variance 
       R is the residual covariance matrix 
  
Residual term: fieldrow.fieldcolumn 
  
Sigma2: 3.876  
  
R uses direct product construction 
  
Factor: fieldrow 
Model:  Auto-regressive          
  
Covariance matrix: 
 
 1  1.000                   
 2  0.459  1.000                 
 3  0.210  0.459  1.000               
 4  0.096  0.210  0.459  1.000             
 5  0.044  0.096  0.210  0.459  1.000           
 6  0.020  0.044  0.096  0.210  0.459  1.000         
 7  0.009  0.020  0.044  0.096  0.210  0.459  1.000       
 8  0.004  0.009  0.020  0.044  0.096  0.210  0.459  1.000     
 9  0.002  0.004  0.009  0.020  0.044  0.096  0.210  0.459  1.000   
 10  0.001  0.002  0.004  0.009  0.020  0.044  0.096  0.210  0.459  1.000 
   1  2  3  4  5  6  7  8  9  10 
  
Factor: fieldcolumn 
Model:  Auto-regressive          
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Covariance matrix (first 10 rows only): 
  
 1  1.000                   
 2  0.684  1.000                 
 3  0.468  0.684  1.000               
 4  0.320  0.468  0.684  1.000             
 5  0.219  0.320  0.468  0.684  1.000           
 6  0.149  0.219  0.320  0.468  0.684  1.000         
 7  0.102  0.149  0.219  0.320  0.468  0.684  1.000       
 8  0.070  0.102  0.149  0.219  0.320  0.468  0.684  1.000     
 9  0.048  0.070  0.102  0.149  0.219  0.320  0.468  0.684  1.000   
 10  0.033  0.048  0.070  0.102  0.149  0.219  0.320  0.468  0.684  1.000 
   1  2  3  4  5  6  7  8  9  10 

 

So the correlation between two neighbouring plots in the same column is 0.684, stronger than 

for two neighbouring plots in the same row. The correlation between two plots in the same 

column decline as 0.684
2
=0.468, 0.684

3
=0.320, 0.684

4
=0.219, and so on. These are set out in 

the second of the two correlation models in the output. 

 

Although there are 150 plots in square array, the correlation structure we imposed is 

multiplicative in a row × column sense. That means that the correlation between 

neighbouring plots in different rows and/or column is simply a product of the correlation in a 

row direction given the spatial distance between them, and the correlation in a column 

direction. To illustrate, the correlation between the yields in plots (Row 1, Column 1) and 

plot (Row 3, Column 3) is 0.210 × 0.468 = 0.098: 

 

  Row/Replicate outline marked  

Column 1 2 3 4 5 6 

1 

 

  

11 16 3 

2 2 7 
 

12 17 18 

3 4 9 

 

14 19 8 

4 3 8 23 13 18 13 

5 5 10 25 15 20 23 

6 19 8 11 22 5 16 
 

The interpretation of the analysis is a subject in the applied part of this workshop. 

 


